Структура проектирования
СОДЕРЖАНИЕ
Введение
1. Инженерное проектирование……………………………………………
1.1 Виды проектирования………………………………………………….
1.2 Структура проектирования…………………………………………….
1.3 Стадии проектирования ……………………………………………….
1.4 Проектные процедуры………………………………………………….
1.5 Системный подход……………………………………………………...
2. Интегрированные системы проектирования (ИСП)………...................
2.1 Структура систем автоматизированного проектирования…………...
2.2 Классификация систем проектирования………………………………
2.3 CAD, CAM, CAE системы……………………………………………..
2.4 Технология CALS………………………………………………………
3. Техническое обеспечение ИСП…………………………………………
3.1 Требования к техническому обеспечению…………………………....
3.2 Виды сетей………………………………………………………………
3.3 Вычислительные системы……………………………………………..
3.4 Периферийные устройства…………………………………………….
4.Математическое обеспечение в ИСП……………………………..……
4.1 Виды математических моделей и требования к ним…………………
4.2 Формирование математических моделей на макроуровне……….….
4.3 Моделирование аналоговых устройств на
функционально-логическом уровне………………………………………
4.4 Моделирование цифровых устройств на
функционально-логическом уровне………………………………………
4.5 Математическое обеспечение анализа на системном уровне…….…….
5.Автоматизированные системы
управления (АСУ) производством………………………………...……….
5.1 Иерархический принцип построения систем
управления производством………………………………..………………
5.2 Функциональная структура систем
управления производством…………..………..………………………..…
5.3 Техническая структура и программное обеспечение АСУ .............……
ИНЖЕНЕРНОЕ ПРОЕКТИРОВАНИЕ
Виды проектирования
Проектирование технического объекта — создание, преобразование и представление в принятой форме образа этого еще не существующего объекта. Образ объекта или его составных частей может создаваться в воображении человека в результате творческого процесса или генерироваться в соответствии с некоторыми алгоритмами в процессе взаимодействия человека и компьютера.
Проектирование разделяется на три вида: ручное, автоматическое и автоматизированное:
· Ручное проектирование осуществляется без использования компьютера.
· Автоматическое производиться без участия человека на промежуточных этапах. Автоматическое проектирование возможно лишь в отдельных частных случаях для сравнительно несложных объектов.
· Проектирование, при котором все проектные решения или их часть получают путем взаимодействия человека и компьютера, называют автоматизированным.
В настоящее время преобладает автоматизированное проектирование.
Структура проектирования.
В проектировании широко применяется принцип блочно-иерархического подхода. При этом представления о проектируемой системе разделяют на иерархические уровни.
На верхнем уровне используют наименее детализированное представление, отражающее только самые общие черты и особенности проектируемой системы. На следующих уровнях степень подробности описания возрастает, при этом рассматривают уже отдельные блоки системы, но с учетом воздействий на каждый из них его соседей. Такой подход позволяет на каждом иерархическом уровне формулировать задачи приемлемой сложности, поддающиеся решению с помощью имеющихся средств проектирования. Разбиение на уровни должно быть таким, чтобы документация на блок любого уровня была обозрима и воспринимаема одним человеком.
Таким образом, блочно-иерархический подход основан на разбиении сложной задачи большой размерности на последовательно и (или) параллельно решаемые группы задач малой размерности, что существенно сокращает требования к используемым вычислительным ресурсам или время решения задач.
Список иерархических уровней в каждом приложении может быть специфичным, но для большинства приложений характерно следующее наиболее крупное выделение уровней:
· системный уровень, на котором решают наиболее общие задачи проектирования систем, машин и процессов; результаты проектирования представляют в виде структурных схем, генеральных планов, схем размещения оборудования, диаграмм потоков данных и т.п.;
· макроуровень на котором проектируют отдельные устройства, узлы машин и приборов; результаты представляют в виде функциональных, принципиальных и кинематических схем, сборочных чертежей и т.п.;
· микроуровень на котором проектируют отдельные детали и элементы машин и приборов.
В каждом приложении число выделяемых уровней и их наименования могут быть различными. Так, в радиоэлектронике микроуровень часто называют компонентным, а макроуровень — схемотехническим. Между схемотехническим и системным уровнями вводят уровень, называемый функционально-логическим. В вычислительной технике системный уровень подразделяют на уровни проектирования ЭВМ (вычислительных систем) и вычислительных сетей. В машиностроении имеются уровни деталей, узлов, машин, комплексов.
В зависимости от последовательности решения задач иерархических уровней различают проектирование:
1. Нисходящее – последовательность решения задач проектирования осуществляется от верхних уровней к нижним;
2. Восходящее – последовательность решения задач проектирования осуществляется от нижних уровней к верхним;
3. Смешанное– имеются элементы как восходящего, так и нисходящего проектирования.
В большинстве случаев для сложных систем предпочитают нисходящее проектирование. При наличии заранее спроектированных составных блоков (устройств) используют смешанное проектирование.
Неопределенность и нечеткость исходных данных при нисходящем проектировании или исходных требований при восходящем проектировании обусловливают необходимость прогнозирования недостающих данных с последующим их уточнением, т.е. последовательного приближения к окончательному решению.
Наряду с иерархическими уровнями применяют разделение представлений о проектируемых объектах на аспекты.
Аспект описания (страта)— описание системы или ее части с некоторой оговоренной точки зрения, определяемой функциональными, физическими или иного типа отношениями между свойствами и элементами.
Различают аспекты:
· Функциональный. Функциональное описание относят к функциям системы и чаще всего представляют его функциональными схемами.
· Информационный. Информационноеописание включает в себя основные понятия предметной области, словесное пояснение или числовые значения характеристик (атрибутов) используемых объектов, а также описание связей между этими понятиями и характеристиками. Информационные модели можно представлять графически (графы, диаграммы сущность-отношение), в виде таблиц или списков.
· Структурный. Структурноеописание относится к морфологии системы, характеризует составные части системы, а так же их соединения друг с другом и может быть представлено структурными схемами, а также различного рода конструкторской документацией.
· Поведенческий. Поведенческоеописание характеризует процессы функционирования (алгоритмы) системы и (или) технологические процессы создания системы.
Стадии проектирования
Стадиями проектирования называют наиболее крупные части проектирования, как процесса, развивающегося во времени.
В общем случае выделяют стадии научно-исследовательских работ (НИР), эскизного проекта или опытно-конструкторских работ (ОКР), технического, рабочего проектов, испытаний опытных образцов или опытных партий. Стадию НИР иногда называют предпроектными исследованиями или стадией технического предложения. По мере перехода от стадии к стадии степень подробности и тщательность проработки проекта возрастают, и рабочий проект уже должен быть вполне достаточным для изготовления опытных или серийных образцов.
Стадии (этапы) проектирования подразделяют на составные части, называемые проектными процедурами. Примерами проектных процедур могут служить подготовка деталировочных чертежей, анализ кинематики, моделирование переходного процесса, оптимизация параметров и другие проектные задачи.
В свою очередь, проектные процедуры можно разделить на более мелкие компоненты, называемые проектными операциями, например, при анализе прочности детали сеточными методами операциями могут быть построение сетки, выбор или расчет внешних воздействий, собственно моделирование полей напряжений и деформаций, представление результатов моделирования в графической и текстовой формах. Проектирование сводится к выполнению некоторых последовательностей проектных процедур — маршрутов проектирования.
Иногда разработку ТЗ на проектирование называют внешним проектированием, а реализацию ТЗ — внутренним проектированием. В ТЗ на проектирование объекта указывают следующие данные:
1. Назначение объекта.
2. Условия эксплуатации. Наряду с качественными характеристиками (представленными в вербальной форме) имеются числовые параметры, называемые внешнимипараметрами, для которых указаны области допустимых значений. Примеры внешних параметров: температура окружающей среды, внешние силы, электрические напряжения, нагрузки и т.п.
3. Требования к выходнымпараметрам, т.е. к величинам, характеризующим свойства объекта, интересующие потребителя. Эти требования выражены в виде одного из условий работоспособности:
yi = Ti
yi < Ti
yi > Ti
yi ≤ Ti
yi ≥ Ti
где yi — i-й выходной параметр, Ti — норма i-го выходного параметра.
В случае: yi = Ti необходимо задать требуемую точность выполнения равенства.
Проектные процедуры.
Создать проект объекта (изделия или процесса) означает выбрать структуру объекта, определить значения всех его параметров и представить результаты в установленной форме. Результаты (проектная документация) могут быть выражены в виде чертежей, схем, пояснительных записок, программ для программно-управляемого технологического оборудования и других документов на бумаге или на машинных носителях информации.
Разработка (или выбор) структуры объекта есть проектная процедура, называемая структурным синтезом, а расчет (или выбор) значений параметров элементов — процедура параметрического синтеза.
Задача структурного синтеза формулируется в системотехнике как задача принятия решений (ЗПР). Ее суть заключается в определении цели, множества возможных решений и ограничивающих условий. Классификацию ЗПР осуществляют по ряду признаков. По числу критериев различают задачи одно- и многокритериальные. По степени неопределенности различают ЗПР детерминированные, ЗПР в условиях риска — при наличии в формулировке задачи случайных параметров, ЗПР в условиях неопределенности, т.е. при неполноте или недостоверности исходной информации.
Реальные задачи проектирования, как правило, являются многокритериальными. Одна из основных проблем постановки многокритериальных задач — установление правил предпочтения вариантов. Способы сведения многокритериальных задач к однокритериальным и последующие пути решения изучаются в дисциплинах, посвященных методам оптимизации и математическому программированию.
Наличие случайных факторов усложняет решение ЗПР. Основные подходы к решению ЗПР в условиях риска заключаются или в решении “для наихудшего случая”, или в учете в целевой функции математического ожидания и дисперсии выходных параметров. В первом случае задачу решают как детерминированную при завышенных требованиях к качеству решения, что является главным недостатком подхода. Во втором случае достоверность результатов решения намного выше, но возникают трудности с оценкой целевой функции. Применение метода Монте-Карло в случае алгоритмических
моделей становится единственной альтернативой и, следовательно, для решения требуются значительные вычислительные ресурсы.
Существуют две группы ЗПР в условиях неопределенности. Одна из них решается при наличии противодействия разумного противника. Такие задачи изучаются в теории игр, для задач проектирования в технике они не характерны. Во второй группе достижению цели противодействие оказывают силы природы. Для их решения полезно использовать теорию и методы нечетких множеств.
Например, при синтезе структуры автоматизированной системы постановка задачи должна включать в качестве исходных данных следующие сведения:
· множество выполняемых системой функций (другими словами, множество работ, каждая из которых может состоять из одной или более операций);
· типы допустимых для использования серверов (машин), выполняющих функции системы;
· множество внешних источников и потребителей информации;
· во многих случаях задается также некоторая исходная структура системы в виде взаимосвязанной совокупности серверов определенных типов; эта структура может рассматриваться как обобщенная избыточная или как вариант первого приближения;
· различного рода ограничения, в частности, ограничения на затраты материальных ресурсов и (или) на времена выполнения функций системы.
Задача заключается в синтезе (или коррекции) структуры, определении типов серверов (программно-аппаратных средств), распределении функций по серверам таким образом, чтобы достигался экстремум целевой функции при выполнении заданных ограничений.
Конструирование, разработка технологических процессов, оформление проектной документации — частные случаи структурного синтеза.
Задачу параметрического синтеза называют параметрической оптимизацией.
Следующая после синтеза группа проектных процедур — процедуры анализа. Цель анализа – получение информации о характере функционирования и значениях выходных параметров Yпри заданных структуре объекта, сведениях о внешних параметрах Qи параметрах элементов N. Если заданы фиксированные значения параметров Nи Q,то имеет место процедура одновариантного анализа, которая сводится к решению уравнений математической модели и вычислению вектора выходных параметров Y. Если заданы статистические сведения о параметрах Nи нужно получить оценки числовых характеристик распределений выходных параметров (например, оценки математических ожиданий и дисперсий), то это процедура статистического анализа.
В процедурах многовариантного анализа определяется влияние внешних параметров, разброса и нестабильности параметров элементов на выходные параметры. Процедуры статистического анализа и анализа чувствительности — характерные примеры процедур многовариантного анализа.
Системный подход.
Проектирование сложных объектов основано на применении идей и принципов, изложенных в ряде теорий и подходов. Наиболее общим подходом является системный подход, идеями которого пронизаны различные методики проектирования сложных систем. Характерными примерами таких систем являются производственные системы.
В технике дисциплину, в которой исследуются сложные технические системы, их проектирование, и аналогичную теории систем, чаще называют системотехникой. Системы автоматизированного проектирования и управления относятся к числу наиболее сложных современных искусственных систем. Их проектирование и сопровождение невозможны без системного подхода. Интерпретация и конкретизация системного подхода имеют место в ряде известных подходов с другими названиями, которые также можно рассматривать как компоненты системотехники. Таковы структурный, блочно-иерархический, объектно-ориентированный подходы.
В теории систем и системотехнике введен ряд терминов, среди них к базовым нужно отнести следующие понятия:
· Система — множество элементов, находящихся в отношениях и связях между собой.
· Элемент — такая часть системы, представление о которой нецелесообразно подвергать при проектировании дальнейшему членению.
· Сложная система — система, характеризуемая большим числом элементов и, что наиболее важно, большим числом взаимосвязей элементов. Сложность системы определяется также видом взаимосвязей элементов, свойствами целенаправленности, целостности, иерархичности и т.п. Очевидно, что современные автоматизированные информационные системы и, в частности, системы автоматизированного проектирования, являются сложными в силу наличия у них перечисленных свойств и признаков.
· Подсистема— часть системы (подмножество элементов и их взаимосвязей), которая имеет
свойства системы.
· Надсистема — система, по отношению к которой рассматриваемая система является подсистемой.
· Структура— отображение совокупности элементов системы и их взаимосвязей; понятие
структуры отличается от понятия самой системы также тем, что при описании структуры принимают во внимание лишь типы элементов и связей без конкретизации значений их параметров.
· Параметр — величина, выражающая свойство или системы, или ее части, или влияющей на систему среды. Обычно в моделях систем в качестве параметров рассматривают величины, не изменяющиеся в процессе исследования системы. Параметры подразделяют на внешние, внутренние и выходные, выражающие свойства элементов системы, самой системы, внешней среды соответственно. Векторы внутренних, выходных и внешних параметров далее обозначаются X= (x1,x2...xn), Y= (y1,y2...ym), Q= (q1,q2,...qk) соответственно.
К характеристикам сложных систем, как сказано выше, часто относят следующие понятия.
· Целенаправленность — свойство искусственной системы, выражающее назначение системы.
Это свойство необходимо для оценки эффективности вариантов системы.
· Целостность— свойство системы, характеризующее взаимосвязанность элементов и наличие зависимости выходных параметров от параметров элементов, при этом большинство выходных параметров не является простым повторением или суммой параметров элементов.
· Иерархичность— свойство сложной системы, выражающее возможность и целесообразность ее иерархического описания, т.е. представления в виде нескольких уровней, между компонентами которых имеются отношения целое – часть.
Система, реализующая автоматизированное проектирование, представляет собой систему автоматизированного проектирования (в англоязычном написании CAD System — Computer Aided Design System).