Уравнения кинематики манипулятора
Рисунок 6.1. Система координат схватa
Однородная матрица , определяющая положение i-й системы координат относительно базовой системы координат, представляет собой произведение последовательности однородных матриц преобразования i-1Ai и имеет вид:
0Ti= 0Ai 1Ai …i-1Ai= = = для i=1, 2, …, n,
где - матрица, определяющая ориентацию i-й системы координат, связанной с i-м звеном, по отношению к базовой системе координат. Это верхняя левая подматрица , имеющая размерность 3×3.
рi- вектор, соединяющий начало базовой системы координат с началом i-й системы координат. Это верхняя правая подматрица матрицы , имеющая размерность 3×1. В частности, при i=6 мы получаем матрицу , которая задает положение и ориентацию схвата манипулятора относительно базовой системы координат. Эта матрица часто используется при описании кинематики манипулятора. Ее называют «матрицей манипулятора».
Положим, что матрица Т имеет следующий вид:
T= = = = ,
где n – вектор нормали к схвату. В случае плоскопараллельного движения пальцев этот вектор перпендикулярен пальцам манипулятора;
s – касательный вектор схвата. Он лежит в плоскости движения пальцев и указывает направление движения пальцев во время открытия или закрытия схвата;
a - вектор подхода схвата. Он направлен по нормали к ладони схвата, (т.е. перпендикулярно плоскости крепления инструмента в схвате);
p - вектор положения схвата. Этот вектор направлен из начала базовой системы координат к началу системы координат схвата, которое, как правило, расположено в точке, являющейся геометрическим центром полностью сжатых пальцев.
Если положение манипулятора в абсолютном пространстве определяется матрицей B, а в схвате манипулятора зафиксирован инструмент, положение которого в системе координат схвата определяется матрицей H, то положение рабочего узла инструмента относительно абсолютной системы координат дается произведением матриц В, 0Т0 и Н, т.е.:
. (6-1)
При этом H ≡ , B ≡ .
Решение прямой задачи кинематики для шестизвенного манипулятора является вычислением T=0A6 с помощью последовательного перемножения шести матриц i-1Ai. Решение этой задачи приводит к единственной матрице Тпри заданных и фиксированных системах координат, где для вращательного сочленения и для поступательного сочленения. Ограничения определяются только физическими пределами изменения для каждого сочленения манипулятора.
Матрица T манипулятора Пума имеет вид:
T = 0A11A22A33A44A55A6= , (6-2)
где ;
; ; (6-3) ;
;
; (6-4)
;
;
; (6-5)
;
;
. (6-6)
Например, при имеем
T= ,
что согласуется с выбором системы координат на рис. 5.4.
Из равенств (6-3) – (6-6) видно, что вычисление матрицы манипулятора Т требует обращения к программам вычисления 12 трансцендентных функций, выполнения 40 умножений и 20 сложений в том случае, если производится только вычисление правой подматрицы Т, имеющей размерность 3×3, а вектор n определяется как векторное произведение векторов s и a(n=s×a). Еслиобъединить d6 с длиной рабочего инструмента, то d6=0, а длина инструмента увеличивается на d6 единиц. Это сокращает объем вычислений до 12 бращений и программ вычисления трансцендентных функций, 35 операций умножения и 16 операций сложения.