Протоколы arp и rarp, dhcp
Локальный адрес (МАС-адрес) используется в протоколе IP только в пределах локальной сети при обмене данными между маршрутизатором и узлом этой сети. Маршрутизатор, получив пакет для узла одной из сетей, непосредственно подключенных к его портам, должен для передачи пакета сформировать кадр в соответствии с требованиями принятой в этой сети технологии и указать в нем локальный адрес узла, например его МАС-адрес. В пришедшем пакете этот адрес не указан, поэтому перед маршрутизатором встает задача поиска его по известному IP-адресу, который указан в пакете в качестве адреса назначения. С аналогичной задачей сталкивается и конечный узел, когда он хочет отправить пакет в удаленную сеть через маршрутизатор, подключенный к той же локальной сети, что и данный узел.
Протокол ARP (Address Resolution Protocol, Протокол распознавания адреса) предназначен для преобразования IP-адресов в MAC-адреса, часто называемые также физическими адресами.
Для передачи IP-дейтаграммы по физическому каналу (будем рассматривать Ethernet) требуется инкапсулировать эту дейтаграмму в кадр Ethernet и в заголовке кадра указать адрес Ethernet-карты, на которую будет доставлена эта дейтаграмма для ее последующей обработки вышестоящим по стеку протоколом IP. IP-адрес, включенный в заголовок дейтаграммы, адресует IP-интерфейс какого-либо узла сети и не заключает в себе никаких указаний ни на физическую среду передачи, к которой подключен этот интерфейс, ни тем более на физический адрес устройства (если таковой имеется), с помощью которого этот интерфейс сообщается со средой.
Поиск по данному IP-адресу соответствующего Ethernet-адреса производится протоколом ARP, функционирующим на уровне доступа к среде передачи. Протокол поддерживает в оперативной памяти динамическую arp-таблицу в целях кэширования полученной информации. Порядок функционирования протокола следующий.
С межсетевого уровня поступает IP-дейтаграмма для передачи в физический канал (Ethernet), вместе с дейтаграммой передается, среди прочих параметров, IP-адрес узла назначения. Если в arp-таблице не содержится записи об Ethernet-адресе, соответствующем нужному IP-адресу, модуль arp ставит дейтаграмму в очередь и формирует широковещательный запрос. Запрос получают все узлы, подключенные к данной сети; узел, опознавший свой IP-адрес, отправляет arp-ответ (arp-response) со значением своего адреса Ethernet. Полученные данные заносятся в таблицу, ждущая дейтаграмма извлекается из очереди и передается на инкапсуляцию в кадр Ethernet для последующей отправки по физическому каналу.
ARP-запрос или ответ включается в кадр Ethernet непосредственно после заголовка кадра.
Форматы запроса и ответа одинаковы и отличаются только кодом операции (Operation code, 1 и 2 соответственно). Несмотря на то, что ARP создавался специально для Ethernet, этот протокол может поддерживать различные типы физических сред (поле “Hardware type (Тип физической среды)”, значение 1 соответствует Ethernet), а также различные типы обслуживаемых протоколов (поле “Protocol type (Тип протокола)”, значение 2048 соответствует IP). Поля H-len и P-len содержат длины физического и “протокольного” адресов соответственно, в октетах. Для Ethernet H-len=6, для IP P-len=4.
Рис. 52. Форматы запроса и ответа ARP
Поля “Source hardware address” и “Source protocol address” содержат физический (Ethernet) и “протокольный” (IP) адреса отправителя. Поля “Target hardware address” и “Target protocol address” содержат соответствующие адреса получателя. При посылке запроса поле “Target hardware address” инициализируется нулями, а в поле “Destination (Адрес назначения)” заголовка Ethernet-кадра ставится широковещательный адрес.
Proxy ARP. ARP-ответ может отправляться не обязательно искомым узлом, вместо него это может сделать другой узел. Такой механизм называется proxy ARP.
Рис. Proxy ARP
Рассмотрим пример. Удаленный хост А подключается по коммутируемой линии к сети 194.84.124.0/24 через сервер доступа G. Сеть 194.84.124.0 на физическом уровне представляет собой Ethernet. Сервер G выдает хосту А IP-адрес 194.84.124.30, принадлежащий сети 194.84.124.0. Следовательно, любой узел этой сети, например, хост В, полагает, что может непосредственно отправить дейтаграмму хосту А, поскольку они находятся в одной IP-сети.
IP-модуль хоста В вызывает ARP-модуль для определения физического адреса А. Однако вместо А (который, разумеется, откликнуться не может, потому что физически не подключен к сети Ethernet) откликается сервер G, который и возвращает свой Ethernet-адрес как физический адрес хоста А. Вслед за этим В отправляет, а G получает кадр, содержащий дейтаграмму для А, которую G отправляет адресату по коммутируемому каналу.
Протокол DHCP
Протокол Dynamic Host Configuration Protocol (DHCP) Основным назначением DHCP является динамическое назначение IP-адресов. Однако, кроме динамического, DHCP может поддерживать и более простые способы ручного и автоматического статического назначения адресов.
В ручной процедуре назначения адресов активное участие принимает администратор, который предоставляет DHCP-серверу информацию о соответствии IP-адресов физическим адресам или другим идентификаторам клиентов. Эти адреса сообщаются клиентам в ответ на их запросы к DHCP-серверу.
При автоматическом статическом способе DHCP-сервер присваивает IP-адрес (и, возможно другие параметры конфигурации клиента) из пула наличных IP-адресов без вмешательства оператора. Границы пула назначаемых адресов задает администратор при конфигурировании DHCP-сервера. Между идентификатором клиента и его IP-адресом по-прежнему, как и при ручном назначении, существует постоянное соответствие. Оно устанавливается в момент первичного назначения сервером DHCP IP-адреса клиенту. При всех последующих запросах сервер возвращает тот же самый IP-адрес.
При динамическом распределении адресов DHCP-сервер выдает адрес клиенту на ограниченное время, что дает возможность впоследствии повторно использовать IP-адреса другими компьютерами. Динамическое разделение адресов позволяет строить IP-сеть, количество узлов в которой намного превышает количество имеющихся в распоряжении администратора IP-адресов.
Протокол DHCP использует модель клиент-сервер. Во время старта системы компьютер-клиент DHCP, находящийся в состоянии "инициализация", посылает сообщение discover (исследовать), которое широковещательно распространяется по локальной сети и передается всем DHCP-серверам частной интерсети. Каждый DHCP-сервер, получивший это сообщение, отвечает на него сообщением offer (предложение), которое содержит IP-адрес и конфигурационную информацию.
Компьютер-клиент DHCP переходит в состояние "выбор" и собирает конфигурационные предложения от DHCP-серверов. Затем он выбирает одно из этих предложений, переходит в состояние "запрос" и отправляет сообщение request (запрос) тому DHCP-серверу, чье предложение было выбрано.
Выбранный DHCP-сервер посылает сообщение DHCP-acknowledgment (подтверждение), содержащее тот же IP-адрес, который уже был послан ранее на стадии исследования, а также параметр аренды для этого адреса. Кроме того, DHCP-сервер посылает параметры сетевой конфигурации. После того, как клиент получит это подтверждение, он переходит в состояние "связь", находясь в котором он может принимать участие в работе сети TCP/IP. Компьютеры-клиенты, которые имеют локальные диски, сохраняют полученный адрес для использования при последующих стартах системы. При приближении момента истечения срока аренды адреса компьютер пытается обновить параметры аренды у DHCP-сервера, а если этот IP-адрес не может быть выделен снова, то ему возвращается другой IP-адрес.
В протоколе DHCP описывается несколько типов сообщений, которые используются для обнаружения и выбора DHCP-серверов, для запросов информации о конфигурации, для продления и досрочного прекращения лицензии на IP-адрес. Все эти операции направлены на то, чтобы освободить администратора сети от утомительных рутинных операций по конфигурированию сети.
Контрольные вопросы:
- В чем состоят отличия задач, решаемых протоколами сетевого уровня в локальных и глобальных сетях?
- Чем объясняется лидирующая роль стека протоколов TCP/IP?
- Опишите порядок инкапсуляции данных в стеке TCP/IP.
- Сколько уровней имеет стек TCP/IP? Каковы их функции?
- Какие протоколы стека TCP/IP относятся к уровню межсетевого взаимодействия
- Какой из двух протоколов транспортного уровня является дейтаграммным?_______
_______
- В чем ненадежность протокола IP?
- Протоколы какого уровня не входят в стек TCP/IP, но регламентированы с точки зрения их использования? Приведите пример таких протоколов
- Могут ли быть обнаружены и откорректированы ошибки на сетевом уровне?_____
_______
- Чем занимается Служба доменных имен?
- Опишите порядок взаимодействия DND-сервера и DNS-клиента?
- В чем заключаются функции центра INIC?
- Сколько символов может содержать имя домена? _____________________________
- Какие домены 1-го уровня (трехбуквенные) Вы знаете?
- В чем функции протоколов транспортного уровня?
- Для чего на транспортном уровне используется номер порта?
- Опишите особенности диапазонов значений номеров портов.
- За счет применения каких процедур TCP обеспечивает надежную доставку данных между процессами?
- Приведите пример сокета для FTP-сообщения на IP-адрес класса C.
- Что означает номер сокета 0.0.0.0:0 при пассивном открытии сеанса?
- Поясните принцип работы метода скользящего окна.
- Поддерживает ли протокол TCP дуплексный режим передачи данных? _______
- В каких случаях оказывается выгодней использовать протокол UDP?
- Если протокол UDP не является протоколом, обеспечивающим надежную доставку данных, то означает ли это, что он не занимается подсчетом контрольной суммы дейтаграммы? Ответ поясните.
- Назовите функции протокола IP?
- Что такое IP-сеть?
- Какие функции выполняет в сети протокол ICMP?
- Поясните порядок осуществления ARP-запроса в локальной сети?
- Какие функции выполняет в сети протокол DHCP?
30. Приведите краткое описание протоколов семейства TCP/IP с расшифровкой аббревиатур.