Программа и методика испытаний

Исследование точности численного интегрирования

Отчет по курсовой работе дисциплины «Информатика»

Студент Лаптев С.

гр. Р-200802 ________________ ______________

дата сдачи работы Подпись

Преподаватель _________________ _______________ Плохих О.В.

дата приема работы Подпись

Екатеринбург

Оглавление

1. Задание исследования. 3

2. Подробное описание задачи и способы ее решения. 3

Метод трапеций. 3

Метод Симпсона. 3

3. Результаты исследований. 4

3.1. Сравнение результатов. 19

4. Выводы.. 20

5. Приложение. 21

5.1. Описание применения. 21

5.1.1. Назначение программы.. 21

5.1.2. Условия применения. 21

5.1.3. Описание значения. 21

5.2. Программа и методика испытаний. 22

5.2.1. Объект испытаний. 22

5.2.2. Цель испытаний. 22

5.2.3. Требования к программе. 22

5.2.4. Требования к программной документации. 22

5.2.5. Средства и порядок испытаний. 22

5.2.6. Метод испытаний. 22

5.3. Руководство пользователя. 25

5.3.1. Назначение программы.. 25

5.3.2. Условия и характеристики программы.. 25

5.3.3. Выполнение программы.. 25

5.3.4. Сообщения программы.. 25

5.3.5. Входные и выходные данные. 25

5.3.6. Сборка программы.. 25

5.4. Описание программы.. 26

5.4.1. Общие сведения. 26

5.4.2. Функциональное назначение. 26

5.4.3. Описание логической структуры.. 26

5.4.4. Используемые технические средства. 27

5.4.5. Вызов и загрузка. 27

5.4.6. Входные и выходные данные. 27

5.5. Текст программы.. 28

Задание исследования

Провести исследование внутренней сходимости численного интегрирования методом Симпсона и трапеций различных функций, задаваемых с помощью языка С++.

Подробное описание задачи и способы ее решения

Необходимо провести исследования так называемой внутренней сходимости численного интегрирования методами трапеций и Симпсона различных функций, задаваемых с помощью функций языка С++. Предполагается, что отрезок интегрирования [a,b] разбит на n равных частей системой точек (сеткой).

Программа и методика испытаний - student2.ru

Контроль внутренней сходимости заключается в циклическом вычислении приближенных значений интеграла для удваимого по сравнению со значением на предыдущем прохождении цикла числа n. Отношения абсолютной величины разности этих значений к абсолютной величине предыдущего приближенного значения принимается в качестве критерия достижения точности интеграла.

Построить зависимости количеств итераций от различных величин критерия точности.

Построить обратные зависимости критерия точности от количества итераций.

Повторить все вышеуказанные исследования для случая, когда при вычислении критерия точности разность значений интеграла относится не к предыдущему значению, а к точному значению аналитически вычисленного интеграла.

Исследовать влияние увеличения верхнего предела интегрирования на точность (при прочих неизменных условиях).

Метод трапеций

Программа и методика испытаний - student2.ru

Метод Симпсона

Программа и методика испытаний - student2.ru

Программа и методика испытаний - student2.ru

Результаты исследований

Таблицы и графики зависимостей количества итераций от различных величин критерия точности для интегралов, вычисленных методом трапеций:

Программа и методика испытаний - student2.ru


Критерийточности Количествоитераций
0,0001642
0,0000554
0,0000199
0,0000097
0,000003
0,0000024
0,000021
0,0001352
0,0004427
0,0017771
0,0070933
0,0733414
0,1639168
0,1591954

Программа и методика испытаний - student2.ru



Программа и методика испытаний - student2.ru


Критерийточности Количествоитераций
0,0000435
0,0000246
0,0000098
0,0000027
0,0000054
0,0000034
0,0000111
0,0000371
0,0003384
0,0005241
0,0024769
0,0193195
0,0460816
0,0891634
0,1816833

Программа и методика испытаний - student2.ru



Программа и методика испытаний - student2.ru


Критерийточности Количествоитераций
0,0000009
0,0000005
0,000001
0,0000016
0,0000005
0,000001
0,0000223
0,000056
0,0003561
0,0002782
0,0003474
0,0066709
0,0042367
0,0053266
0,0052932

Программа и методика испытаний - student2.ru

Программа и методика испытаний - student2.ru


Критерийточности Количество итераций
0,7210944
5,7138805
0,5115891
0,1587429
0,2640994
0,273518
0,7462801
0,1349342
0,1746383
0,322107
61,4329529
1,0215764
0,0930657
0,0566663
0,0027258

Программа и методика испытаний - student2.ru



Программа и методика испытаний - student2.ru


Критерийточности Количествоитераций
0,0000017
0,0000075
0,000004
0,0000028
0,0000031
0,0000033
0,0000019
0,0000064
0,0000001
0,0000386
0,0000803
0,0007838
0,0016693
0,0005451
0,0119303

Программа и методика испытаний - student2.ru

Программа и методика испытаний - student2.ru


Критерийточности Количествоитераций
0,0000001
0,0000118
0,0000105
0,0000047
0,000003
0,0000023
0,0000019
0,0000048
0,0000013
0,0000021
0,0000579
0,0001056
0,0012424
0,0027928
0,0026273

Программа и методика испытаний - student2.ru



Таблицы и графики зависимостей количества итераций от различных значений критерия точности для интегралов, вычисленных методом Симпсона:

Программа и методика испытаний - student2.ru


Критерийточности Количествоитераций
0,0000366
0,0000148
0,0000097
0,0000029
0,000005
0,0000158
0,0000078
0,0001184
0,000019
0,000466
0,0069997
0,0210596
0,0596227
0,0416028
0,1333978

Программа и методика испытаний - student2.ru



Программа и методика испытаний - student2.ru


Критерийточности Количествоитераций
0,0000529
0,0000309
0,0000055
0,0000206
0,0000275
0,0000172
0,0000026
0,0000373
0,0001679
0,0009911
0,001429
0,0012871
0,0251969
0,0904129
0,1624286

Программа и методика испытаний - student2.ru




Программа и методика испытаний - student2.ru


Критерийточности Количествоитераций
0,0002614
0,0001696
0,0000683
0,0000173
0,000005
0,0000016
0,0000146
0,0000081
0,0000532
0,0001906
0,0000148
0,0016623
0,0047355
0,0001972
0,0441604

Программа и методика испытаний - student2.ru

Программа и методика испытаний - student2.ru


Критерийточности Количество итераций
1,3475398
299,5162048
0,6511438
0,769284
0,831215
1,4512321
0,2898597
0,4690856
0,1021232
0,0488429
0,2428324
0,3262224
0,0297503
0,0498698
0,0221329

Программа и методика испытаний - student2.ru



Программа и методика испытаний - student2.ru


Критерийточности Количествоитераций
0,001854
0,0011909
0,0008299
0,0000531
0,0001553
0,0000502
0,0000104
0,0000078
0,0000058
0,000028
0,0000372
0,0001925
0,0004425
0,0016719
0,0065919

Программа и методика испытаний - student2.ru

Программа и методика испытаний - student2.ru


Критерийточности Количествоитераций
0,0023198
0,0015105
0,0010463
0,0005129
0,0001719
0,0000787
0,0000228
0,0000053
0,0000017
0,0000023
0,0000167
0,000088
0,0000317
0,0013675
0,0006897

Программа и методика испытаний - student2.ru



Обратные зависимости критерия точности от количества итераций:

Программа и методика испытаний - student2.ru

Программа и методика испытаний - student2.ru

Программа и методика испытаний - student2.ru

Программа и методика испытаний - student2.ru

Программа и методика испытаний - student2.ru

Программа и методика испытаний - student2.ru

Программа и методика испытаний - student2.ru

Программа и методика испытаний - student2.ru

Программа и методика испытаний - student2.ru

Программа и методика испытаний - student2.ru

Программа и методика испытаний - student2.ru

Программа и методика испытаний - student2.ru

Сравнительная таблица значений критерия,полученных по отношению к предыдущему значению и по отношению к аналитическому значению для интеграла, вычисленного методом трапеций:

Программа и методика испытаний - student2.ru

По отношению к предыдущему значению По отношению к аналитическому значению
Критерийточности Количествоитераций Критерийточности Количествоитераций
0,0001642 0,0000916
0,0000554 0,0000361
0,0000199 0,0000162
0,0000097 0,0000065
0,000003 0,0000035
0,0000024 0,0000059
0,000021 0,000015
0,0001352 0,0001503
0,0004427 0,0005929
0,0017771 0,0023689
0,0070933 0,0094454
0,0733414 0,0632033
0,1639168 0,1110735
0,1110735
0,1591954 0,2525865

Программа и методика испытаний - student2.ru

По отношению к предыдущему значению По отношению к аналитическому значению
Критерийточности Количествоитераций Критерийточности Количествоитераций
0,0000435 0,0000444
0,0000246 0,0000198
0,0000098 0,00001
0,0000027 0,0000073
0,0000054 0,0000019
0,0000034 0,0000053
0,0000111 0,0000058
0,0000371 0,0000428
0,0003384 0,0002955
0,0005241 0,0002287
0,0024769 0,002705
0,0193195 0,0165622
0,0460816 0,0302826
0,0891634 0,1167459
0,1816833 0,2772185

Программа и методика испытаний - student2.ru

По отношению к предыдущему значению По отношению к аналитическому значению
Критерийточности Количествоитераций Критерийточности Количествоитераций
0,0000009 0,0000002
0,0000005 0,0000007
0,000001 0,0000002
0,0000016 0,0000018
0,0000005 0,0000014
0,000001 0,0000004
0,0000223 0,0000219
0,000056 0,000078
0,0003561 0,0002781
0,0002782
0,0003474 0,0003474
0,0066709 0,0063258
0,0042367 0,0105358
0,0053266 0,0052653
0,0052932

Программа и методика испытаний - student2.ru

По отношению к предыдущему значению По отношению к аналитическому значению
Критерийточности Количествоитераций Критерийточности Количествоитераций
0,7210944 Не определен
5,7138805 Не определен
0,5115891 Не определен
0,1587429 Не определен
0,2640994 Не определен
0,273518 Не определен
0,7462801 Не определен
0,1349342 Не определен
0,1746383 Не определен
0,322107 Не определен
61,4329529 Не определен
1,0215764 Не определен
0,0930657 Не определен
0,0566663 Не определен
0,0027258 Не определен

Программа и методика испытаний - student2.ru

По отношению к предыдущему значению По отношению к аналитическому значению
Критерийточности Количествоитераций Критерийточности Количествоитераций
0,0000017 0,0000106
0,0000075 0,0000181
0,000004 0,0000221
0,0000028 0,0000249
0,0000031 0,0000281
0,0000033 0,0000314
0,0000019 0,0000333
0,0000064 0,0000269
0,0000001 0,000027
0,0000386 0,0000116
0,0000803 0,0000919
0,0007838 0,000692
0,0016693 0,0009761
0,0005451 0,0015218
0,0119303 0,0104267

Программа и методика испытаний - student2.ru

По отношению к предыдущему значению По отношению к аналитическому значению
Критерийточности Количествоитераций Критерийточности Количествоитераций
0,0000001 0,0000172
0,0000118 0,000029
0,0000105 0,0000395
0,0000047 0,0000442
0,000003 0,0000471
0,0000023 0,0000494
0,0000019 0,0000475
0,0000048 0,0000522
0,0000013 0,000051
0,0000021 0,0000488
0,0000579 0,0000091
0,0001056 0,0001147
0,0012424 0,0011278
0,0027928 0,0016618
0,0026273 0,0009698

Сравнительная таблица значений критерия,полученных по отношению к предыдущему значению и по отношению к аналитическому значению для интеграла, вычисленного методом Симпсона:

Программа и методика испытаний - student2.ru

По отношению к предыдущему значению По отношению к аналитическому значению
Критерийточности Количествоитераций Критерийточности Количествоитераций
0,0000366 0,0000367
0,0000148 0,0000515
0,0000097 0,0000612
0,0000029 0,0000584
0,000005 0,0000534
0,0000158 0,0000376
0,0000078 0,0000298
0,0001184 0,0000886
0,000019 0,0000696
0,000466 0,0005357
0,0069997 0,0075391
0,0210596 0,0136792
0,0596227 0,0724863
0,0416028 0,1110735
0,1333978 0,2296544

Программа и методика испытаний - student2.ru

По отношению к предыдущему значению По отношению к аналитическому значению
Критерийточности Количествоитераций Критерийточности Количествоитераций
0,0000529 0,0000535
0,0000309 0,0000844
0,0000055 0,0000899
0,0000206 0,0000693
0,0000275 0,0000418
0,0000172 0,0000246
0,0000026 0,000022
0,0000373 0,0000593
0,0001679 0,0002272
0,0009911 0,0007638
0,001429 0,0021938
0,0012871 0,0009039
0,0251969 0,0243158
0,0904129 0,1125302
0,1624286 0,2566807

Программа и методика испытаний - student2.ru

По отношению к предыдущему значению По отношению к аналитическому значению
Критерийточности Количествоитераций Критерийточности Количествоитераций
0,0002614 0,0002623
0,0001696 0,0000927
0,0000683 0,0000245
0,0000173 0,0000072
0,000005 0,0000022
0,0000016 0,0000038
0,0000146 0,0000184
0,0000081 0,0000103
0,0000532 0,0000635
0,0001906 0,0002541
0,0000148 0,0002393
0,0016623 0,0019011
0,0047355 0,0066277
0,0001972 0,0064318
0,0441604 0,0503082

Программа и методика испытаний - student2.ru

По отношению к предыдущему значению По отношению к аналитическому значению
Критерийточности Количествоитераций Критерийточности Количествоитераций
1,3475398 Не определен
299,5162048 Не определен
0,6511438 Не определен
0,769284 Не определен
0,831215 Не определен
1,4512321 Не определен
0,2898597 Не определен
0,4690856 Не определен
0,1021232 Не определен
0,0488429 Не определен
0,2428324 Не определен
0,3262224 Не определен
0,0297503 Не определен
0,0498698 Не определен
0,0221329 Не определен

Программа и методика испытаний - student2.ru

По отношению к предыдущему значению По отношению к аналитическому значению
Критерийточности Количествоитераций Критерийточности Количествоитераций
0,001854 0,0018223
0,0011909 0,0006292
0,0008299 0,0002012
0,0000531 0,0002543
0,0001553 0,0000991
0,0000502 0,0000489
0,0000104 0,0000385
0,0000078 0,0000307
0,0000058 0,0000365
0,000028 0,0000645
0,0000372 0,0000272
0,0001925 0,0002197
0,0004425 0,000662
0,0016719 0,0010088
0,0065919 0,0055898

Программа и методика испытаний - student2.ru

По отношению к предыдущему значению По отношению к аналитическому значению
Критерийточности Количествоитераций Критерийточности Количествоитераций
0,0023198 0,0023715
0,0015105 0,0008646
0,0010463 0,0001808
0,0005129 0,0003322
0,0001719 0,0001603
0,0000787 0,0000817
0,0000228 0,0000589
0,0000053 0,0000536
0,0000017 0,0000518
0,0000023 0,0000541
0,0000167 0,0000708
0,000088 0,0000172
0,0000317 0,0000146
0,0013675 0,001382
0,0006897 0,0020707

Сравнениерезультатов

Таблица сравнительных результатов:

Методтрапеций n=1000 МетодСимпсона n =1000 Аналитический результат Функция Пределы
4,5002217 4,4996448 4,4998096 f(x)=1/x 0,1…..9
1,6667408 1,6665776 1,6666667 f(x)=1/x*x 0,5…..3
1,9999987 1,9999982 f(x)=sin(x) 0…….π
-0,0000007 -0,0000009 f(x)=sin(2*x) 0…….π
0,2857112 0,2862349 0,2857142 f(x)=sin(7*x) 0…....π
0,2222184 0,2216952 0,2222222 f(x)=sin(9*x) 0…....π

Таблица влияния увеличения верхнего предела на точность интегрирования на примере функции:

Программа и методика испытаний - student2.ru

Аналитическое значение Практическое значение Верхний предел Погрешность
4,4998097 4,5002217 0,000412
4,6051701 4,6056180 -0,0004479
4,7874917 4,7880392 -0,0005475
4,9416424 4,9422879 -0,0006455
5,0751738 5,0759511 -0,0007773
5,1929568 5,1938734 -0,0009166
5,2983173 5,2993822 -0,0010649

Таб. 2 - Таблица влияния увеличения верхнего предела на точность интегрирования

Из таблицы видно, что увеличение верхнего предела приводит к уменьшению точности интегрирования.

Выводы

В ходе выполнения данной работы было выявлено, что при увеличении количества разбиений отрезков интегрирования значения, полученные численными методами, стремятся к аналитически вычисленному значению интеграла.

Критерии точности относительно предыдущего вычисления и относительно аналитически вычисленного примерно равны, это означает, что численные методы являются достаточно точными. Но метод трапеций является более точным методом вычисления значения интеграла, чем метод Симпсона. При его вычислениях были замечены наименьшие неточности вычисления.

Также было выявлено, что при увеличении значения верхнего предела интегрирования любым из предложенных методов, критерий точности интегрирования становится больше. Следовательно, увеличение верхнего предела приводит к уменьшению точности интегрирования.

Приложение

Описание применения

Назначение программы

Программа lap предназначена для исследования точности численного интегрирования методами трапеций и Симпсона для степенных функций и функций вида sin(mx).

Программа применяется для вычисления погрешностей численного интегрирования, нахождения значения интеграла методами трапеций и Симпсона и вычисления критерия точности. Результаты вычисления записываются в файл data.xls (при отсутствии данного файла программа запрашивает ввести имя файла с клавиатуры), предназначенный для работы в программном продукте MicrosoftExcel 2007. Построение графиков зависимостей критерия точности от количества итерацийпроизводятся также с помощью Excel 2007.

Условия применения

Для выполнения программы достаточно вычислительной установки типа PC с процессором PentiumIII (или быстрее) и 128 Мбайт оперативной памяти, оснащенной любой из следующих операционных систем: MicrosoftWindowsNT и выше.

Описание значения

Вычисления точности численного интегрирования методов трапеций и Симпсона сводится к сравнению соседних значений интегралов, а также сравнению значений с аналитическим значением интеграла.

Программа и методика испытаний

Объект испытаний

Объектом испытаний является исполняемый модуль программы lap. Программа lap предназначена для исследования точности численного интегрирования методами трапеций и Симпсона для степенных функций и функций вида sin(mx).

Цель испытаний

Целью испытаний является проверка точности работы программы на конкретной вычислительной установке.

Требования к программе

Во время испытаний следует проверить правильное прохождение контрольного примера при решении задачи двумя различными методами.

Наши рекомендации