Операторы, вычисляющие значение функции

endfunctionНапример, function y=f(t) y=t^2/sqrt(3+sin(t)) endfunctionилиfunction y=f(t),y=t^2/sqrt(3+sin(t)),endfunction

Ниже приводится пример вычисления интеграла Операторы, вычисляющие значение функции - student2.ru .

Фрагмент программы function y=f(x) y=2*x./(sin(x)+1.5)endfunctionz=intg(2,5.3,f), disp(z) Результат   30.437056

Для решения нелинейных уравнений в Scilab используется функция

fsolve(x0,f) ,

где x0 –начальное приближение корня, f– функция, описывающая левую часть уравнения f(x)=0.

Например, для решения уравнения Операторы, вычисляющие значение функции - student2.ru для начального приближения Операторы, вычисляющие значение функции - student2.ru нужно выполнить следующие команды:

Фрагмент программы   deff('y=F(x)', 'y=sin(2*x)-cos(3*x.^2)-sin(3*x)')root=fsolve(7,F)disp(root) Результат   6.9755674

Для решения полиномиальных уравнений вида Операторы, вычисляющие значение функции - student2.ru используется функция

roots(a),

где а – вектор коэффициентов перед неизвестными полинома размерностью n+1(n – порядок полинома).

Результатом работы этой функции будет вектор корней полинома размерностью n.

Пример решения полиномиального уравнения Операторы, вычисляющие значение функции - student2.ru приведен ниже.

Фрагмент программы   v=[3 1 -10 -8]R=roots(v)disp(R) Результат   2. - 1.3333333 - 1.

Для уравнения Операторы, вычисляющие значение функции - student2.ru два корня – комплексные.

Фрагмент программы v=[3 1 -10 8]R=roots(v)disp(R) Результат - 2.2935835 0.9801251 + 0.4494650i 0.9801251 - 0.4494650i

Функция rootsможет также принимать в качестве параметра полином, созданный функциейpolyи представляющий собой левую часть уравнения Операторы, вычисляющие значение функции - student2.ru :

poly(a, x, f1 ),

где a –вектор коэффициентов полинома записанных в обратном порядке, x - символьная переменная, f1– символьная переменная, принимающая значения 'c' или 'r' (roots или coeff).

Например, чтобы создать полином Операторы, вычисляющие значение функции - student2.ru , нужно использовать команду

Фрагмент программы p=poly([3 -2 1 0 4],'x','c')disp(p) Результат Операторы, вычисляющие значение функции - student2.ru

Для решения уравнения Операторы, вычисляющие значение функции - student2.ru можно выполнить следующие команды:

Фрагмент программы p=poly([-8 -10 1 3],'x','c')R=roots(p)disp(R) Результат 2. - 1.3333333 - 1.

Для решения систем линейных уравнений в Scilab есть следующие способы:

- применение операции левого матричного деления;

- использование обратной матрицы.

Если задана система линейных алгебраических уравнений вида:

AX=B,

где А – матрица коэффициентов перед неизвестными системы, В – вектор свободных членов, то решение системы может быть найдено в виде:

Х=А \ B

То же самое решение может быть получено с помощью обратной матрицы, например:

X=inv(A)*B

Например, решить систему уравнений Операторы, вычисляющие значение функции - student2.ru

можно так:

Фрагмент программы A=[3 1;-3 5]; B=[-4 ;36]; X=inv(A)*B, disp(X)или X1=A\B , disp(X1) Результат - 3.1111111 5.3333333

Для решения систем нелинейных уравнений можно использовать функцию

fsolve(x0,f),

где x0 –вектор начальных приближений для неизвестных, f –функция, определяющая систему

Например, решение системы Операторы, вычисляющие значение функции - student2.ru можно выполнить следующим образом:

Фрагмент программы function [y]=fun(x) y(1)=2*x(1)+x(2)-6 y(2)=x(1)^2+x(2)^2-14endfunctionX0=[1;1]R=fsolve(X0,fun)disp(R) Результат 1.2338096 3.5323808

Практическая часть

Задание 1. Вычисление определенного интеграла

Наши рекомендации