Модели представления знаний

Продукционная модель

Продукционная модель,или модель, основанная на правилах, позволяет представить знания в виде предложений типа: Если (условие), то (действие).

Под условием понимается некоторое предложение-образец, по которому осуществляется поиск в базе знаний, а под действием – действия, выполняемые при успешном исходе поиска (они могут быть промежуточными, выступающими далее как условия, и терминальными или целевыми, завершающими работу системы).

При использовании продукционной модели база знаний состоит из набора правил. Программа, управляющая перебором правил, называется машиной вывода. Чаще всего вывод бывает прямой (от данных к поиску цели) или обратный (от цели для ее подтверждения – к данным). Данные – это исходные факты, на основании которых запускается машина вывода – программа, перебирающая правила из базы.

Пример 16.2.Имеется фрагмент базы знаний из двух правил:

П1: Если "отдых – летом" и "человек – активный", то "ехать в горы".

П2: Если "любит солнце", то "отдых летом".

Предположим, в систему поступили данные – "человек активный" и "любит солнце".

Прямой вывод – исходя из данных, получить ответ.

1-й проход.

Шаг 1. Пробуем П1, не работает (не хватает данных "отдых – летом").

Шаг 2. Пробуем П2, работает, в базу поступает факт "отдых – летом".

2-й проход.

Шаг 3. Пробуем П1, работает, активируется цель "ехать в горы", которая и выступает как совет, который дает ЭС.

Обратный вывод – подтвердить выбранную цель при помощи имеющихся правил и данных.

1-й проход.

Шаг 1. Цель – "ехать в горы": пробуем П1 – данных "отдых – летом" нет, они становятся новой целью, и ищется правило, где она в правой части.

Шаг 2. Цель "отдых – летом": правило П2 подтверждает цель и активирует ее.

2-й проход.

Шаг 3. Пробуем П1, подтверждается искомая цель.

Продукционная модель чаще всего применяется в промышленных экспертных системах. Она привлекает разработчиков своей наглядностью, высокой модульностью, легкостью внесения дополнений и изменений и простотой механизма логического вывода.

Имеется большое число программных средств, реализующих продукционный подход (язык OPS 5 [8]; "оболочки" или "пустые" ЭС – EXSYS [10], ЭКСПЕРТ [2]; инструментальные системы ПИЭС [11] и СПЭИС [3] и др.), а также промышленных ЭС на его основе (ФИАКР [8]) и др.

Семантические сети

Термин семантическая означает смысловая, а сама семантика – это наука, устанавливающая отношения между символами и объектами, которые они обозначают, т.е. наука, определяющая смысл знаков.

Семантическая сеть– это ориентированный граф, вершины которого – понятия, а дуги – отношения между ними.

Понятиями обычно выступают абстрактные или конкретные объекты, а отношения – это связи типа: "это" ("is"), "имеет частью" ("has part"), "принадлежит", "любит". Характерной особенностью семантических сетей является обязательное наличие трех типов отношений:

класс – элемент класса;

свойство – значение;

пример элемента класса.

Можно ввести несколько классификаций семантических сетей. Например, по количеству типов отношений:

однородные (с единственным типом отношений);

неоднородные (с различными типами отношений).

По типам отношений:

бинарные (в которых отношения связывают два объекта);

n-арные (в которых есть специальные отношения, связывающие более двух понятий).

Наиболее часто в семантических сетях используются следующие отношения:

связи типа "часть-целое" ("класс-подкласс", "элемент-множество" и т.п.);

функциональные связи (определяемые обычно глаголами "производит", "влияет"...);

количественные (больше, меньше, равно...);

пространственные (далеко от, близко от, за, под, над ...);

временные (раньше, позже, в течение...);

атрибутивные связи ( иметь свойство, иметь значение...);

логические связи (и, или, не) и др.

Проблема поиска решения в базе знаний типа семантической сети сводится к задаче поиска фрагмента сети, соответствующего некоторой подсети, соответствующей поставленному вопросу.

Пример 16.3.На рис. 16.1 изображена семантическая сеть. В качестве вершин – понятия: Человек, Иванов, Волга, Автомобиль, Вид транспорта, Двигатель.

модели представления знаний - student2.ru

Рис. 16.1.Семантическая сеть

Основное преимущество этой модели – в соответствии современным представлениям об организации долговременной памяти человека. Недостаток модели – сложность поиска вывода на семантической сети.

Для реализации семантических сетей существуют специальные сетевые языки, например NET[12] и др. Широко известны экспертные системы, использующие семантические сети в качестве языка представления знаний – PROSPECTOR, CASNET, TORUS [8, 10].

Фреймы

Фрейм (англ. frame – каркас или рамка) предложен М. Минским в 70-е гг. как структура знаний для восприятия пространственных сцен. Эта модель, как и семантическая сеть, имеет глубокое психологическое обоснование.

Под фреймом понимается абстрактный образ или ситуация. В психологии и философии известно понятие абстрактного образа. Например, слово "комната" вызывает у слушающих образ комнаты: "жилое помещение с четырьмя стенами, полом, потолком, окнами и дверью, площадью 6-20 м2 ". Из этого описания ничего нельзя убрать (например, убрав окна, мы получим уже чулан, а не комнату), но в нем есть "дырки", или "слоты", – это незаполненные значения некоторых атрибутов – количество окон, цвет стен, высота потолка, покрытие пола и др.

В теории фреймов такой образ называется фреймом. Фреймом называется также и формализованная модель для отображения образа.

Структуру фрейма можно представить так:

модели представления знаний - student2.ru

В таблице дополнительные столбцы предназначены для описания типа слота и возможного присоединения к тому или иному слоту специальных процедур, что допускается в теории фреймов. В качестве значения слота может выступать имя другого фрейма; так образуют сети фреймов.

Различают фреймы-образцы, или прототипы, хранящиеся в базе знаний, и фреймы-экземпляры, которые создаются для отображения реальных ситуаций на основе поступающих данных.

Модель фрейма является достаточно универсальной, поскольку позволяет отобразить все многообразие знаний о мире через:

фреймы-структуры, для обозначения объектов и понятий (заем, залог, вексель);

фреймы-роли (менеджер, кассир, клиент);

фреймы-сценарии (банкротство, собрание акционеров, празднование именин);

фреймы-ситуации (тревога, авария, рабочий режим устройства) и др.

Важнейшим свойством теории фреймов является заимствованное из теории семантических сетей наследование свойств. И во фреймах, и в семантических сетях наследование происходит по АКО-связям (A-Kind-Of = это). Слот АКО указывает на фрейм более высокого уровня иерархии, откуда неявно наследуются, т.е. переносятся, значения аналогичных слотов.

Пример 16.4.Например, в сети фреймов на рис. 16.2 понятие "ученик" наследует свойства фреймов "ребенок" и "человек", которые находятся на более высоком уровне иерархии. Так, на вопрос: "Любят ли ученики сладкое?" Следует ответ: "Да", так как этим свойством обладают все дети, что указано во фрейме "ребенок". Наследование свойств может быть частичным, так, возраст для учеников не наследуется из фрейма "ребенок", поскольку указан явно в своем собственном фрейме.

Основным преимуществом фреймов как модели представления знаний является способность отражать концептуальную основу организации памяти человека [13], а также ее гибкость и наглядность.

Специальные языки представления знаний в сетях фреймов FRL (Frame Representation Language) [1] и другие позволяют эффективно строить промышленные ЭС. Широко известны такие фреймо-ориентированные экспертные системы, как ANALYST, МОДИС [3, 8].

модели представления знаний - student2.ru

Рис. 16.2.Сеть фреймов

Наши рекомендации