Рабочая емкость, Кбайт (после форматирования) 360 720 1200 720 1440

Плотность записи, бит/мм 231 233 380 343 558

Плотность дорожек, дорожек/мм 1,9 3,8 3,8 5,3 5,3

Число дорожек на одной поверхности диска 40 80 80 80 80

Число поверхностей (сторон) 2 2 2 2 2

Среднее время доступа, мс 80 100 100 65 65

Скорость передачи, Кбайт/с 50 50 80 80 150

Скорость вращения, об./мин 3000 3000 3600 7200 7200

Число секторов 9 9 15 9 18

Емкость сектора дорожки, байт 512 512 512 512 512

Задание 7

1. Добавить верхний колонтитул «Лабораторная работа №3»

2. Вставить номера страниц, обновить оглавление и список иллюстраций.

3. Показать выполнение преподавателю.

Приложение 1

ЗАПОМИНАЮЩИЕ УСТРОЙСТВА ПК

РЕГИСТРОВАЯ КЭШ-ПАМЯТЬ

Регистровая КЭШ-память - высокоскоростная память сравнительно большой емкости, являющаяся буфером между ОП и МП и позволяющая увеличить скорость выполнения операций. Создавать ее целесообразно в ПК с тактовой частотой задающего генератора 40 МГц и более. Регистры КЭШ-памяти недоступны для пользователя, отсюда и название КЭШ (Cache), в переводе с английского означает "тайник".

В КЭШ-памяти хранятся данные, которые МП получил и будет использовать в ближайшие такты своей работы. Быстрый доступ к этим данным и позволяет сократить время выполнения очередных команд программы. При выполнении программы данные, считанные из ОП с небольшим опережением, записываются в КЭШ-память.

По принципу записи результатов различают два типа КЭШ-памяти:

КЭШ-память "с обратной записью" - результаты операций прежде, чем их записать в ОП, фиксируются в КЭШ-памяти, а затем контроллер КЭШ-памяти самостоятельно перезаписывает эти данные в ОП;

КЭШ-память "со сквозной записью" - результаты операций одновременно, параллельно записываются и в КЭШ-память, и в ОП.

Микропроцессоры начиная от МП 80486 имеют свою встроенную КЭШ-память (или КЭШ-память 1-го уровня), чем, в частности, и обусловливается их высокая производительность. Микропроцессоры Pentium и Pentium Pro имеют КЭШ-память отдельно для данных и отдельно для команд, причем если у Pentium емкость этой памяти небольшая - по 8 Кбайт, то у Pentium Pro она достигает 256 - 512 Кбайт.

Следует иметь в виду, что для всех МП может использоваться дополнительная КЭШ-память (КЭШ-память 2-го уровня), размещаемая на материнской плате вне МП, емкость которой может достигать нескольких мегабайтов.

Примечание. Оперативная память может строиться на микросхемах динамического (Dinamic Random Access Memory - DRAM) или статического (Static Random Access Memory - SRAM) типа. Статический тип памяти обладает существенно более высоким быстродействием, но значительно дороже динамического, Для регистровой памяти(МПП и КЭШ-память) используются SRAM, а ОЗУ основной памяти строится на базе DRAM-микросхем.

ОСНОВНАЯ ПАМЯТЬ

Физическая структура

Основная память содержит оперативное (RAM - Random Access Memory - память с произвольным доступом) и постоянное (ROM - Read-Only Memory) запоминающие устройства.

Оперативное запоминающее устройство предназначено для хранения информации (программ и данных), непосредственно участвующей в вычислительном процессе на текущем этапе функционирования ПК.

ОЗУ - энергозависимая память: при отключении напряжения питания информация, хранящаяся в ней, теряется. Основу ОЗУ составляют большие интегральные схемы, содержащие матрицы полупроводниковых запоминающих элементов (триггеров). Запоминающие элементы расположены на пересечении вертикальных и горизонтальных шин матрицы; запись и считывание информации осуществляются подачей электрических импульсов по тем шинам матрицы, которые соединены с элементами, принадлежащими выбранной ячейке памяти.

Конструктивно элементы оперативной памяти выполняются в виде отдельных микросхем типа DIP (Dual In-line Package - двухрядное расположение выводов) или в виде модулей памяти типа SIP (Single In-line Package - однорядное расположение выводов), или, что чаще, SIMM (Single In line Memory Module - модуль памяти с одноразрядным расположением выводов). Модули SIMM имеют емкость 256Кбайт, 1, 4, 8, 16 или 32 Мбайта, с контролем и без контроля четности хранимых битов; могут иметь 30- ("короткие") и 72-("длинные") контактные разъемы, соответствующие разъемам на материнской плате компьютера. На материнскую плату можно установить несколько (четыре и более) модулей SIMM.

Постоянное запоминающее устройство также строится на основе установленных на материнской плате модулей (кассет) и используется для хранения неизменяемой информации: загрузочных программ операционной системы, программ тестирования устройств компьютера и некоторых драйверов базовой системы ввода-вывода (BIOS - Base Input-Output System) и др. Из ПЗУ можно только считывать информацию, запись информации в ПЗУ выполняется вне ЭВМ в лабораторных условиях. Модули и кассеты ПЗУ имеют емкость, как правило, не превышающую нескольких сот килобайт. ПЗУ - энергонезависимое запоминающее устройство.

В последние годы в некоторых ПК стали использоваться полупостоянные. перепрограммируемые запоминающие устройства - FLASH-память. Модули или карты FLASH-памяти могут устанавливаться прямо в разъемы материнской платы и имеют следующие параметры: емкость от 32 Кбайт до 4 Мбайт, время доступа по считыванию 0.06 мкс, время записи одного байта примерно 10 мкс: FLASH-память - энергонезависимое запоминающее устройство.

Для перезаписи информации необходимо подать на специальный вход FLASH-памяти напряжение программирования (12В), что исключает возможность случайного стирания информации. Перепрограммирование FLASH- памяти может выполняться непосредственно с дискетыили с клавиатуры ПК при наличии; специального контроллера либо с внешнего программатора, подключаемого к ПК.

FLASH-память может быть полезной как для создания весьма быстродействующих компактных, альтернативных НЖМД запоминающих устройств - "твердотельных дисков", так и для замены ПЗУ, хранящего программы BIOS, позволяя "прямо с дискеты" обновлять и заменять эти программы на более новыеверсии при модернизации ПК.

Структурно основная память состоит из миллионов отдельных ячеек памяти емкостью 1 байт каждая. Общая емкость основной памяти современных ПК обычно лежит в пределах от 1 до 32 Мбайт. Емкость ОЗУ на один-два порядка превышает емкость ПЗУ: ПЗУ занимает 128 (реже 256) Кбайт, остальной объем - это ОЗУ.

Логическая структура основной памяти

Каждая ячейка памяти имеет свой уникальный (отличный от всех других) адрес. Основная память имеет для ОЗУ и ПЗУ единое адресное пространство.

Адресное пространство определяет максимально возможное количество непосредственно адресуемых ячеек основной памяти.

Адресное пространство зависит от разрядности адресных шин, ибо максимальное количество разных адресов определяется разнообразием двоичных чисел, которые можно отобразить в n разрядах, т.е. адресное пространство равно 2n, где n - разрядность адреса.

Для ПК характерно стандартное распределение непосредственно адресуемой памяти между ОЗУ, ПЗУ и функционально ориентированной информацией рис

Основная память в соответствии с методами доступа и адресации делится на отдельные, иногда частично или полностью перекрывающие друг друга области, имеющие общепринятые названия. В частности, укрупненно логическая структура основной памяти ПК обшей емкостью, например, 16 Мбайт представлена на рисунок

Рисунок Распределение 1-Мбайтной области ОП

Рисунок Логическая структура основной памяти

Прежде всего основная память компьютера делится на две логические области: непосредственно адресуемую память, занимающую первые 1024 Кбайта ячеек с адресами от 0 до 1024 Кбайт-1, расширенную память, доступ к ячейкам которой возможен при использовании специальных программ-драйверов.

Драйвер - специальная программа, управляющая работой памяти или внешними устройствами ЭВМ и организующая обмен информацией между МП, ОП и внешними устройствами ЭВМ.

Драйвер, управляющий работой памяти, называется диспетчером памяти.

Стандартной памятью (СМА - Conventional Memory Area) называется непосредственно адресуемая память в диапазоне от 0 до 640 Кбайт.

Непосредственно адресуемая память в диапазоне адресов от 640 до 1024 Кбайт называется верхней памятью (UMA - Upper Memory Area). Верхняя память зарезервирована для памяти дисплея (видеопамяти) и постоянного запоминающего устройства. Однако обычно в ней остаются свободные участки - "окна", которые могут быть использованы при помощи диспетчера памяти в качестве оперативной памяти общего назначения.

Расширенная память - это память с адресами 1024 Кбайта и выше.

Непосредственный доступ к этой памяти возможен только в защищенном режиме работы микропроцессора.

В реальном режиме имеются два способа доступа к этой памяти, но только при использовании драйверов:

по спецификации XMS (эту память называют тогда ХМА - eXtended Memory Area);

по спецификации EMS (память называют ЕМ -Expanded Memory).

Доступ к расширенной памяти согласно спецификации XMS (eXtended Memory Specification) организуется при использовании драйверов ХММ (extended Memory Manager). Часто эту память называют дополнительной, учитывая, что в первых моделях персональных компьютеров эта память размещалась на отдельных дополнительных платах, хотя термин Extended почти идентичен, термину Expanded и более точно переводится как расширенный, увеличенный.

Спецификация EMS (Expanded Memory Specification) является более ранней. Coгласно этой спецификации доступ реализуется путем отображения по мере необходимости отдельных полей Expanded Memory в определенную область верхней памяти. При этом хранится не обрабатываемая информация, а лишь адреса, обеспечивающие доступ к этой информации. Память, организуемая по спецификации EMS, носит название отображаемой, поэтому и сочетание слов Expanded Memory (EM) часто переводят как отображаемая память. Для организации отображаемой памяти необходимо воспользоваться драйвером EMM386.EXE (Expanded Memory Manager) или пакетом управления памятью QEMM.

Расширенная память может быть использована главным образом для хранения дат и некоторых программ ОС. Часто расширенную память используют для организации виртуальных (электронных) дисков.

Исключение составляет небольшая 64-Кбайтная область памяти с адресами от 1024 до 1088 Кбайт (так называемая высокая память, иногда ее называют старшая: НМА - High Memory Area), которая может адресоваться и непосредственно при использовании драйвера HIMEM.SYS (High Memory Manager) в соответствии со спецификацией XMS. НМА обычно используется для хранения программ и данных операционной системы.

В современных ПК существует режим виртуальной адресации (virtual - кажущийся, воображаемый). Виртуальная адресация используется для увеличения предоставляемой программам оперативной памяти за счет отображения в части адресного пространства фрагмента внешней памяти.

ВНЕШНЯЯ ПАМЯТЬ

Устройства внешней памяти или, иначе, внешние запоминающие устройства весьма разнообразны. Их можно классифицировать по целому ряду признаков: по виду носителя, типу конструкции, по принципу записи и считывания информации, методу доступа и т.д.

Носитель - материальный объект, способный хранить информацию.

Один из возможных вариантов классификации ВЗУ приведен на рисунке

Рисунок Классификация ВЗУ

В зависимости от типа носителя все ВЗУ можно подразделить на накопители на магнитной ленте и дисковые накопители.

Накопители на магнитной ленте, в свою очередь, бывают двух видов: накопители на бобинной магнитной ленте (НБМЛ) и накопители на кассетной магнитной ленте (НКМ- стриммеры). В ПК используются только стриммеры.

Диски относятся к машинным носителям информации с прямым доступом. Понятие прямой доступ означает, что ПК может "обратиться" к дорожке, на которой начинается участок с искомой информацией или куда нужно записать новую информацию, непосредственно, где бы ни находилась головка записи/чтения накопителя.

Накопители на дисках более разнообразны :

- накопители на гибких магнитных дисках (НГМД), иначе, на флоппи-дисках или на дискетах;

- накопители на жестких магнитных дисках (НЖМД) типа "винчестер";

- накопители на сменных жестких магнитных дисках, использующие эффект Бернулли;

- накопители на флоптических дисках, иначе, floptical-накопители;

- накопители сверхвысокой плотности записи, иначе, VHD-накопители;

- накопители на оптических компакт-дисках CD-ROM (Compact Disk ROM);

- накопители на оптических дисках типа СС WORM (Continuous Composite Write Once Read Many - однократная запись - многократное чтение);

- накопители на магнитооптических дисках (НМОД) и др.

Таблица 1. Сравнительные характеристики дисковых накопителей

Тип накопления Емкость, Мбайт Время доступа, мс Трансфер, Кбайт/с Вид доступа
НГМД 1,2; 1,44 65-100 Чтение/запись
Винчестер 250-4000 8-20 500-3000 Чтение/запись
Бернулли 20-230 500-2000 Чтение/запись
Floptical 20,8 100-300 Чтение/запись
VHD 120-240 200-600 Чтение/запись
CD-ROM 250-1500 15-300 150-1500 Только чтение
CC WORM 120-1000 15-150 150-1500 Чтение/ однократная запись
НМОД 128-1300 15-150 300-1000 Чтение/запись

Логическая структура диска

Магнитные диски (МД) относятся к магнитным машинным носителям информации. В качестве запоминающей среды у них используются магнитные материалы со специальными свойствами (с прямоугольной петлей гистерезиса), позволяющими фиксировать два магнитных состояния - два направления намагниченности. Каждому из этих состояний ставятся в соответствие двоичные цифры: 0 и 1. Накопители на МД (НМД) являются наиболее распространенными внешними запоминающими устройствами в ПК. Диски бывают жесткими и гибкими, сменными и встроенными в ПК. Устройство для чтения и записи информации на магнитном диске называется дисководом.

Все диски: и магнитные, и оптические характеризуются своим диаметром или, иначе, форм-фактором. Наибольшее распространение получили диски с форм-факторами 3,5" (89 мм) и 5,25" (133 мм). Диски с форм-фактором 3,5" при меньших габаритах имеют большую емкость, меньшее время доступа и более высокую скорость чтения данных подряд (трансфер), более высокие надежность и долговечность.

Информация на МД записывается и считывается магнитными головками вдоль концентрических окружностей - дорожек (треков). Количество дорожек на МД и их информационная емкость зависят от типа МД, конструкции накопителя на МД, качества магнитных головок и магнитного покрытия (см. рисунок ).

Каждая дорожка МД разбита на сектора. В одном секторе дорожки может быть помещено 128, 256, 512 или 1024 байт, но обычно 512 байт данных. Обмен данными между НМД и ОП осуществляется последовательно целым числом секторов. Кластер - это минимальная единица размещения информации на диске, состоящая из одного или нескольких смежных секторов дорожки.

При записи и чтении информации МД вращается вокруг своей оси, а механизм управления магнитной головкой подводит ее к дорожке, выбранной для записи или чтения информации.

Данные на дисках хранятся в файлах, которые обычно отождествляют с участком (областью, полем) памяти на этих носителях информации.

Файл - это именованная область внешней памяти, выделенная для хранения массива данный.

Поле памяти создаваемому файлу выделяется кратным определенному количеству кластеров. Кластеры, выделяемые одному файлу, могут находиться в любом свободном месте дисковой памяти и необязательно являются смежными. Файлы, хранящиеся в разбросанных по диску кластерах, называются фрагментированными.

Для пакетов магнитных дисков (диски установлены на одной оси) и для двухсторонних дисков вводится понятие "цилиндр". Цилиндром называется совокупность дорожек МД, находящихся на одинаковом расстоянии от его центра.

Накопители на гибких магнитных дисках

На гибком магнитном диске (дискете) магнитный слой наносится на гибкую основу. Используемые в ПК ГМД имеют форм-фактор 5,25" и 3,5". Емкость ГМД колеблется в пределах от 180 Кбайт до 2,88 Мбайта. ГМД диаметром 5,25 дюйма помещается в плотный гибкий конверт, а диаметром 3.5 дюйма - в пластмассовую кассету для защиты от пыли и механических повреждений.

Основные характеристики некоторых типов НГМД приведены в табл.2.

Таблица 2. Основные характеристики НГМД

Конструктивно дискета диаметром 133 мм изготовляется из гибкого пластика (лавсана), покрытого износоустойчивым ферролаком, и помещается в футляр-конверт. Дискета имеет две прорези: центральное отверстие для соединения с дисководом и смещенное от центра небольшое отверстие (обычно скрытое футляром), определяющее радиус-вектор начала всех дорожек на ГМД. Футляр также имеет несколько прорезей: центральное отверстие чуть большее, чем отверстие на дискете; широкое окно для считывающих и записывающих магнитных головок и боковую прорезь в виде прямоугольника, закрытие которой липкой лентой, например, защищает дискету от записи и стирания информации.

Дискета диаметром 89 мм имеет более жесткую конструкцию, более тщательно защищена от внешних воздействий, но в принципе имеет примерно те же конструктивные элементы. Режим запрета записи на этих дискетах устанавливается специальным переключателем, расположенным в одном из углов дискеты.

В последние годы появились дискеты с тефлоновым покрытием (например. Verbutim Data Life Plus), которое предохраняет магнитное покрытие и записанную на нем информацию от грязи, пыли, воды, жира, отпечатков пальцев и даже от растворителей типа ацетона. Возможная емкость 3,5-дюймовой дискеты Data Life Plus - 2,88 Мбайта. Следует упомянуть и дискеты "Go anywhere", распространяемые у нас в стране под названием "Вездеход". Они также обладают стойкостью к различным внешним воздействиям: температуре, влажности, запыленности.

Каждую новую дискету в начале работы с ней следует отформатировать.

Форматирование дискеты - это создание структуры записи информации на ее поверхности: разметка дорожек, секторов, записи маркеров и другой служебной информации.

Возможный вариант форматирования зависит от типа дискеты (маркируемого на ее конверте):

- SS/SD - односторонняя (Single Sides), одинарной плотности (Single Density);

- SS/DD - односторонняя, двойной плотности (Double Density);

- DS/SD - двухсторонняя (Double Sides), одинарной плотности;

- DS/DD - двухсторонняя, двойной плотности;

- DS/HD - двухсторонняя, высокой плотности (Hign Density), обеспечивающая максимальные емкости.

Правила обращения с дискетой:

- не сгибать дискету;

- не прикасаться руками к магнитному покрытию диска;

- не подвергать дискету воздействию магнитных полей;

- нужно хранить дискету в бумажном конверте при положительной температуре;

- надписи на приклеенной к дискете этикетке следует делать без нажима карандашом;

- брать дискету только за один угол защитного конверта;

- нельзя мыть дискету;

- нужно извлекать дискету перед выключением ПК;

- вставлять дискету в дисковод и вынимать ее из него только тогда, когда не горит сигнальная лампочка включения дисковода.

Накопители на жестких магнитных дисках

В качестве накопителей на жестких магнитных дисках (НЖМД) широкое распространение в ПК получили накопители типа "винчестер".

Термин винчестер возник из жаргонного названия первой модели жесткого диска емкостью 16 Кбайт (IBM, 1973 г.), имевшего 30 дорожек по 30 секторов, что случайно совпало с калибром "30/30" известного охотничьего ружья "Винчестер".

В этих накопителях один или несколько жестких дисков, изготовленных из сплавов алюминия или из керамики и покрытых ферролаком, вместе с блоком магнитных головок считывания/записи помещены в герметически закрытый корпус. Емкость этих накопителей благодаря чрезвычайно плотной записи, получаемой в таких несъемных конструкциях, достигает нескольких тысяч мегабайт; быстродействие их также значительно более высокое, нежели у НГМД.

Максимальные значения на 1995 г.:

- емкость 5000 Мбайт (стандарт емкости на 1995 г.-850 Мбайт);

- скорость вращения 7200 об./мин;

- время доступа - 6 мс;

- трансфер - 11 Мбайт/с.

НЖМД весьма разнообразны. Диаметр дисков чаще всего 3,5" (89 мм), но есть и другие, в частности 5,25" (133 мм) и 1,8" (45 мм). Наиболее распространенная высота корпуса дисковода 25 мм у настольных ПК, 41 мм - у машин-серверов, 12 мм - у портативных ПК и др.

В современных винчестерах стал использоваться метод зонной записи. В этом случае все пространство диска делится на несколько зон, причем во внешних зонах секторов размещается больше данных, чем во внутренних. Это, в частности, позволило увеличить емкость жестких дисков примерно на 30%.

Для того чтобы получить на магнитном носителе структуру диска, включающую в себя дорожки и сектора, над ним должна быть выполнена процедура, называемая физическим, или низкоуровневым, форматированием (physical, или low-level formatting). В ходе выполнения этой процедуры контроллер записывает на носитель служебную информацию, которая определяет разметку цилиндров диска на сектора и нумерует их. Форматирование низкого уровня предусматривает и маркировку дефектных секторов для исключения обращения к ним в процессе эксплуатации диска.

Максимальная емкость и скорость передачи данных существенно зависят от интерфейса, используемого накопителем.

Распространенный сейчас интерфейс AT Attachment (ATA), широкоизвестный и под именем Integrated Device Electronics (IDE), предложенный в 1988 г. пользователям ПК IBM PC/AT, ограничивает емкость одного накопителя 504 Мбайтами (эта емкость ограничена адресным пространством традиционной адресации "головка - цилиндр - сектор": 16 головок * 1024 цилиндра * 63 сектора * 512 байт в секторе = 504 Кбайта = 528 482 304 байта) и обеспечивает скорость передачи данных 5-10 Мбайт/с.

Интерфейс Fast ATA-2 или Enhanced IDE (EIDE), использующий как традиционную (но расширенную) адресацию по номерам головки, цилиндра и сектора, так и адресацию логических блоков (Logic Block Address LBA), поддерживает емкость диска до 2500 Мбайт и скорость обмена до 16 Мбайт/с. С помощью EIDE к материнской плате может подключаться до четырех накопителей, в том числе и CD-ROM, и НКМЛ. Для старых версий BIOS для поддержки EIDE нужен специальный драйвер.

Наряду с ATA и ATA-2 широко используются и две версии более сложных дисковых интерфейсов Small Computer System Interface (интерфейс малых компьютерных систем): SCSI и SCSI-2. Их достоинства: высокая скорость передачи данных (интерфейс Fast Wide SCSI-2 и ожидаемый в ближайшее время интерфейс SCSI-3 поддерживают скорость до 40 Мбайт/с), большое количество (до 7 шт.) и максимальная емкость подключаемых накопителей. Их недостатки: высокая стоимость (примерно в 5 -10 раз дороже ATA), сложность установки и настройки. Интерфейсы SCSI-2 и SCSI-3 рассчитаны на использование в мощных машинах-серверах и рабочих станциях.

Для повышения скорости обмена данными процессора с дисками НЖМД следует кэшировать. КЭШ-память для дисков имеет то же функциональное назначение, что и КЭШ для основной памяти, т.е. служит быстродействующим буфером памяти для кратковременного хранения информации, считываемой или записываемой на диск. КЭШ-память может быть встроенной в дисковод, а может создаваться программным путем (например, драйвером Microsoft Smartdrive) в оперативной памяти. Скорость обмена данными процессора с КЭШ-памятью диска может достигать 100 Мбайт/с.

В ПК имеется обычно один, реже несколько накопителей на жестких магнитных дисках. Однако в MS DOS (MicroSoft Disk Operation System - дисковая операционная система фирмы Microsoft) программными средствами один физический диск может быть разделен на несколько "логических" дисков; тем самым имитируется несколько НМД на одном накопителе.

Дисковые массивы RAID

В машинах-серверах баз данных и в суперЭВМ часто применяются дисковые массивы RAID (Redundant Array of Independent Disks - матрица с резервируемыми независимыми дисками), в которых несколько накопителей на жестких дисках объединены в один большой логический диск, при этом используются основанные на введении информационной избыточности методы обеспечения достоверности информации, существенно повышающие надежность работы системы (при обнаружении искаженной информации она автоматически корректируется, а неисправный накопитель в режиме Plug and Play (вставляй и работай) замещается исправным).

Существует несколько уровней базовой компоновки массивов RAID:

1-й уровень включает два диска, второй из которых является точной копией первого;

2-й уровень использует несколько дисков специально для хранения контрольных сумм и обеспечивает самый сложный функционально и самый эффективный метод исправления ошибок;

3-й уровень включает четыре диска: три информационных, а четвертый хранит контрольные суммы, обеспечивающие исправление ошибок в первых трех;

4-й и 5-й уровни используют диски, на каждом из которых хранятся свои собственные контрольные суммы.

Дисковые массивы второго поколения - RAID6 и RAID7. Последние могут объединять до 48 физических дисков любой емкости, формирующих до 120 логических дисков; имеют внутреннюю КЭШ-память до 256 Мбайт и разъемы для подключения внешних интерфейсов типа SCSI. Внутренняя шина X-bus имеет пропускную способность 80 Мбайт/с (для сравнения: трансфер SCSI-3 до 40 Мбайт/с, а скорость считывания с физического диска до 5 Мбайт/с).

Среднее время наработки на отказ в дисковых массивах RAID - сотни тысяч часов, а при 2-м уровне компоновки - до миллиона часов. В обычных НМД эта величина не превышает тысячи часов. Информационная емкость дисковых массивов RAID - от 3 до 700 Гбайт (максимальная достигнутая в 1995 г. емкость дисковых накопителей 5,5 Тбайта=5500 Гбайт).

Применяются и НЖМД со сменными пакетам и дисков (накопители Бернулли), использующие пакеты из дисков диаметром 133 мм, они имеют емкость от 20 до 230 Мбайт и меньшее быстродействие, но более дорогие, чем винчестеры. Основное их достоинство: возможность накопления и хранения пакетов вне ПК.

Основные направления улучшения характеристик НМД:

- использование высокоэффективных дисковых интерфейсов (E1DE, SCSI);

- использование более совершенных магнитных головок, позволяющих увеличить плотность записи и, следовательно, емкость диска и трансфер (без увеличения скорости вращения диска);

- применение зонной записи, при которой на внешних дорожках диска размещается больше данных, нежели на внутренних;

- эффективное кэширование диска.

Накопители на оптических дисках

В последние годы все большее распространение получают накопители на оптических дисках (НОД). Благодаря маленьким размерам (используются компакт-диски диаметром 3,5" и 5,25"), большой емкости и надежности эти накопители становятся все более популярными.

Неперезаписываемые лазерно-оптические диски обычно называют компакт-дисками ПЗУ - Compact Disk CD-ROM. Эти диски поставляются фирмой-изготовителем с уже записанной на них информацией (в частности, с программным обеспечением). Запись информации на них возможна только вне ПК, в лабораторных условиях, лазерным лучом большой мощности, который оставляет на активном слое CD след - дорожку с микроскопическими впадинами. Таким образом создается первичный "мастер-диск". Процесс массового тиражирования CD-ROM по "мастер-диску" выполняется путем литья под давлением. В оптическом дисководе ПК эта дорожка читается лазерным лучом существенно меньшей мощности.

CD-ROM ввиду чрезвычайно плотной записи информации имеют емкость от 250 Мбайт до 1,5 Гбайта, время доступа в разных оптических дисках также колеблется от 30 до 300 мс, скорость считывания информации от 150 до 1500 Кбайт/с.

Перезаписываемые лазерно-оптические диски с однократной (CD-R - CD Recordable) и многократной (CD-E - CD Erasable) записью должны появиться, по сообщениям зарубежной прессы, в 1996 г. На этих CD лазерный луч непосредственно в дисководе компьютера при записи прожигает микроскопические углубления на поверхности диска под защитным слоем; чтение записи выполняется лазерным лучом так же, как и у CD-ROM. Дисководы CD-E будут способны читать и обычные CD-ROM.

Перезаписываемые магнитооптические диски (СС-Е - Continuous Composite Erasable) используют лазерный луч для местного разогрева поверхности диска при записи информации магнитной головкой. Считывание информации выполняется лазерным лучом меньшей мощности.

Сущность процессов записи/считывания обусловлена следующим. Активный слой на поверхности магнитооптического диска может быть перемагничен магнитной головкой только при высокой температуре. Такая температура (сотни градусов) создается лазерным импульсом длительностью порядка 0,1 мкс. При считывании информации вектор поляризации отраженного от поверхности диска лазерного луча на несколько градусов изменяет свое направление в зависимости от направления намагниченного участка активного слоя. Изменение направления поляризации и воспринимается соответствующим датчиком,

Магнитооптические диски с однократной записью (СС WORM - Continuous Composite Write Once Read Many) аналогичны обычным магнитооптическим накопителям с той разницей, что в них на контрольные дорожки дисков наносятся специальные метки, предотвращающие стирание и повторную запись на диск.

В магнитооптических накопителях запись информации обычно осуществляется за два прохода, поэтому скорость записи значительно меньше скорости считывания.

Емкость современных магнитооптических дисков доходит до 2,6 Гбайта (ожидаются в ближайшее время СС-Е емкостью 5,2 Гбайта), время доступа от 15 до 150 мс, скорость считывания до 2000 Кбайт/с. Но перезаписывающие дисководы очень дороги (около тысячи долларов).

Основными достоинствами НОД являются:

- сменяемость и компактность носителей;

- большая информационная емкость;

- высокая надежность и долговечность CD и головок считывания/записи (до 50 лет);

- меньшая (по сравнению с НМД) чувствительность к загрязнениям и вибрациям;

- нечувствительность к электромагнитным полям.

Основными локальными интерфейсами для НОД являются интерфейсы EIDE и SCSI. В ПК используются также диски с высокой плотностью записи, на поверхности которых для более точного позиционирования магнитной головки используется лазерный луч. По внешнему виду эти диски напоминают 3,5-дюймовые (реже 5,25") дискеты, но имеют более жесткую конструкцию.

Среди накопителей, использующих такие диски, следует назвать:

- накопители на флоптических дисках - выполняют обычную магнитную запись информации, но со значительно большей плотностью размещения дорожек на поверхности диска. Такая плотность достигается ввиду наличия на дисках специальных нанесенных лазерным лучом серводорожек, служащих при считывании/записи базой для позиционирования лазерного луча, и соответственно магнитной головки, жестко связанной с лазером. Стандартная емкость флоптического диска 20,8 Мбайта;

- накопители сверхвысокой плотности записи (VHD - Very High Density) - используют кроме лазерного позиционирования еще и специальные дисководы, обеспечивающие иную технологию записи/считывания: "перпендикулярного" способа записи вместо обычного "продольного". Сейчас выпускаются VHD-диски емкостью 120-240 Мбайт; фирма Hewlett Packard объявила о создании диска емкостью 1000 Мбайт, а фирма IBM - дисков емкостью 8700 и 10800 Мбайт.

Накопители на магнитной ленте

Накопители на магнитной ленте были первыми ВЗУ вычислительных машин- В универсальных ЭВМ широко использовались и используются накопители на бобинной магнитной ленте, а в персональных ЭВМ - накопители на кассетной магнитной ленте.

Кассеты с магнитной лентой (картриджи) весьма разнообразны: они отличаются как шириной применяемой магнитной ленты, так и конструкцией. Объемы хранимой на одной кассете информации постоянно растут. Так, емкость картриджей первого поколения, содержащих магнитную ленту длиной 120 м, шириной 3,81 мм с 2 - 4 дорожками, не превышала 25 Мбайт; в конце 80-х гг. появились картриджи с большей плотностью записи на ленте шириной четверть дюйма (Quarter Inch Cartridge) (стандарты QIC - 40/80); первые такие картриджи были выпущены фирмой ЗМ - кассеты DC300 емкостью 60 - 250 Мбайт (поэтому этот стандарт часто называют стандарт ЗМ); последние модели картриджей (стандарт QIC 3010-3020) имеют емкость 340, 680 и даже 840-1700 Мбайт и более (стандарт QIC ЗОЮ - 3020 Wide, увеличивший ширину магнитной ленты до 0,315 дюйма). При сжатии данных может быть достигнута еще большая емкость, например, НКМЛ Conner CTD 8000 имеет емкость 8 Гбайт, Sony DDS-2 -16 Гбайт при трансфере 250 Кбайт/с.

Лентопротяжные механизмы для картриджей носят название стриммеров - это инерционные механизмы, требующие после каждой остановки ленты ее небольшой перемотки назад (перепозиционирования). Это перепозиционирование увеличивает и без того большое время доступа к информации на ленте (десятки секунд), поэтому стриммеры нашли применение в персональных компьютерах лишь для резервного копирования и архивирования информации с жестких дисков и в бытовых компьютерах для хранения пакетов игровых программ.

Скорость считывания информации с магнитной ленты в стриммерах также невысока и обычно составляет около 100 Кбайт/с. НКМЛ могут использовать локальные интерфейсы SCSI.

СРАВНИТЕЛЬНЫЕ ХАРАКТЕРИСТИКИ ЗАПОМИНАЮЩИХ УСТРОЙСТВ

Итак, персональные ЭВМ имеют четыре иерархических уровня памяти: микропроцессорную память, регистровую КЭШ-память, основную память, внешнюю память. Две важнейшие характеристики (емкость памяти и ее быстродействие) указанных типов памяти приведены в табл. 3.

Таблица 3. Сравнительные характеристики запоминающих устройств.

Тип памяти Емкость Быстродействие
МПП Десятки байт tобр=0,001 - 0,004 мкс
КЭШ-память Сотни килобайт tобр=0,002 - 0,005 мкс
ОП ОЗУ ПЗУ Единицы- десятки мегабайт Сотни килобайт tобр=0,07 - 0,1 мкс tобр=0,07 - 0,2 мкс
ВЗУ НЖМД НГМД CD-ROM Сотни мегабайт - единицы гигабайт Единицы мегабайт Сотни мегабайт - единицы гигабайт tд=7-30 мс Vсч=500-3000 Кбайт/с tд=50-100 мс Vсч=40-100 Кбайт/с tд=15-300 мс Vсч=150-1500 Кбайт/с

Примечание. Общепринятые сокращения: с - секунда, мс - миллисекунда, мкс - микросекунда, нс - наносекунда;

1с = 103 =106 мкс=109-нс.

Наши рекомендации

Число: 2070