Глава 21. 21,3, Это модифицированное определение является менее эффективным и может привести к возник-

21.1. з ( (a I List] , Rest) :-

5 [ List, tb I Rest]) .

21,3, Это модифицированное определение является менее эффективным и может привести к возник-

новению бесконечного цикла.

Глава 23

23.1. В ведите Б п рограм му метай нте рп ретат ора следую щее п ре дложе н не:

prove! clause! Head, Body)) :-clause ( Head, Body) .

23.3. Варианты возникают в связи с тем, что предикат square (б) наследует метод pe r i m ete r

от нескольких объектов. Такое множественное наследование можно предотвратить, введя опе­ратор отсечения в процедуру send



Решения к отдельным упражнениям

Список литературы

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15. 16. 17. 18.

Advances in Computer Chess Series: Clarke M.R.B. (ed.). Vols 1-2. Edinburgh

University Press; Clarke M.R.B. (ed.). Vol. 3. Pergamon Press; Beal D.F. (ed.).

Vol. 4. Pergamon Press; Beal D.F. (ed.). Vol. 5. North-Hoi land; Beal D.F. (ed.).
Vol. 6. Ellis Horwood.

Aho A.V., Hopcroft J.E., Ullman J.D. (1974). The Design and Analysis of Computer Algorithms. Addison-Wesley.

Aho A.V., Hopcroft J.E., Ullman J.D. (1983). Data Structures and Algorithms. Addison-Wesley.

AIJ volume 76 (1995). Artificial Intelligence, Vol. 76. Special issue on Planning and Scheduling.

Alien J.F. (1995). Natural Language Understanding. Redwood City, CA Benjamin/Cu minings.

Allen J., Hendler J., Tate A. (eds) (1990). Readings in Planning. San Mateo, CA: Morgan. Kauf mann.

Berliner H.J. (1977). A representation and some mechanisms for a problem solving chess program. In: Clarke M.R.B. (ed.). Advances in Computer Ckess 1. Edinburgh University Press.

Bobrow D.G. (ed.) (1984). Artificial Intelligence Journal, Vol. 24 (Special Volume on Qualitative Reasoning1 about Physical Systems). Этот сборник статей вышел также под названием: Qualitative Reasoning about Physical Systems. Cambridge, MA: MIT Press 1985.

Bowen D.L. (1981). DECsy&tcm-lO Prolog User's Manual. University of Edinburgh: Department of Artificial Intelligence.

Brachman R.J., Levesque H.J. (eds) (1985). Readings in Knowledge Representation. Los Altos, CA: Morgan Kauf mann.

Bramer MA. (ed.) (1983). Computer Game Playing: Theory and Practice. Chichester: Ellis Horwood and John Wiley.

Bratko I. (1990). Prolog Programming for Artificial Intelligence. Addison-Wesley,

Bratko I. (1978). Proving correctness of strategies in the AL1 assertional language. Information Processing Letters, 7: 223-230.

Bratko I. (19S2). Knowledge-based problem solving in AL3. In: Hayes J., Michie D., Pao J.H. (eds). Machine Intelligence 10. Ellis Horwood (сокращенную версию можно также найти в [11]).

Bratko I. (1932). Knowledge-based problem-solving in AL3. In: Hayes J.E., Michie D., Pao Y.H. (eds). Machine Intelligence 10. Ellis Horwood.

Bratko I. (1984). Advice and planning in chess end-games. In: Amarel S., Elithorn A., Banerji R (eds). Artificial and Human Intelligence. North-Holland.

Bratko I. (1985). Symbolic derivation of chess patterns. In: Steels L., Campbell JA. (eds). Progress in Artificial Intelligence. Chichester: Ellis Horwood and John Wiley.

Bratko I. (1999). Refining complete hypotheses in ILP. In: Dzeroski S., Flach P. (eds). Inductive Logic Programming. Proc. ILP-99. LNAI 1634, Springer.

.

19. Bratko L, Michie D. (1980). AH advice program for a complex chess programming task. Computer Journal, 23: 353-359.

20. Bratko I., Mozetic, I., Lavrac, N. (1989). KARDIO: a Study in Deep and Qualitative Knowledge for Expert Systems, Cambridge, MA: MIT Press.

21. Bratko I., Muggleton S., KaraliC A. (1998). Applications of inductive logic programming. In: Michalski R.S., Bratko I,, Kubat M. (eds). Machine Learning and Data Mining: Methods and Applications. Chichester: Wiley.

22. Bratko I., Muggleton S., Varsek A. (1991). Learning qualitative models of dynamic systems. In: Brazdil P. (ed.). Proc. Inductive Logic Programming ILP-91, Viana do Castelo, Portugal. См. также: Muggleton S. (ed.). Inductive Logic Programming. London: Academic Press 1992.

23. Breiman L, Friedman J.H., Olshen R.A, Stone C.J. (19S4). Classification and Regression Trees. Belmont, CA Wadsworth Int. Group.

24. Buchanan B.C., Shortliffe E.H. (eds) (1984). Rule based Expert Systems: The MYCIN Experiments of the Stanford Heuristic Programming Project. Addison-Wesley.

25. Castillo E., Gutierrez J.M., Hadi AS. (1996). Expert Sustems and Probabilistic Network Models. Berlin: Springer-Ver lag.

26. Cestnik B. (1990). Estimating probabilities: a crucial task in machine learning. Proc. ECAI 90, Stockholm.

27. Cestnik В., Bratko I. (1991). On estimating probabilities in tree pruning. Proc. European Conf. on Machine Learning, Porto, Portugal. Berlin: Springer-Verlag.

28. Cestnik В., Kononenko I., Bratko I. (1987). ASISTANT 86: a knowledge elicitation tool for sophisticated users. In: Bratko I., LavraC N. (eds). Progress in Machine Learning. Wilmslow, England: Sigma Press; распространяется издательством Wiley.

29. Chapman D. (1987). Planning for conjunctive goals. Artificial Intelligence, 32: 333-377.

30. Clark P. (1985). Towards an Improved Domain Representation for Planning.
Edinburgh University: Department of Artificial Intelligence, MSc Thesis.

31. Clark P., Niblett T. (1989). The CN2 induction algorithm. Machine Learning, 3, 262-284.

32. Clocksin W.F., Mellish C.S. (1987). Programming in Prolog, second edition. Berlin: Springer- Ver 1 ag.

33. Coelho H., Cotta J.C. (1988). Prolog by Example. Berlin: Springer- Ver lag.

34. Coffman E.G., Denning P.J. (1973). Operating Systems Theory. Prentice Hall.

35. Cohen J. (1990). Constraint logic programming languages. Communications of the ACM, 33: 52-68.

36. Coiera E. (1989). Generating qualitative models from example behaviours. DCS Report No. 8901, School of Computer Sc. and Eng., Univ. of New South Wales, Sydney, Australia.

37. Cormen Т.Н., Leiserson C.E., Rivest R.L. (1990), Introduction io Algorithms
(second edition 2000). MIT Press.

38. Covington. M.A (1994). Natural Language Processing for Prolog Pivgrammers.
Englewood Cliffs, NJ: Prentice Hall.

39. Davis E. (1990). Representations of Commonsense Knowledge. San Mateo, CA Morgan Kaufmann.

40. de Kleer J., Brown J.S. (1984). Qualitative physics based on confluences. Artificial Intelligence Journal, 24: 7-83.



Список литературы

41. de Kleer J., Williams B.C. (fids) (1991). Artificial Intelligence Journal, Vol. 51
(Special Issue on Qualitative Reasoning about Physical Systems II).

42. De Raedt L, (ed.) (1996). Advances in Inductive Logic Programming. Amsterdam: 1OS Press.

43. Deransart P., Ed-Bdali A., Ceroni L. (1996). Prolog: The Standard. Berlin: Sp ri n ge r- Verlag.

44. Doran J., Michie D. (1966). Experiments with the graph traverser program, Proc. Royal Society of London, 294(A); 235-259.

45. Engelmore R., Morgan T. (eds) (1988). Blackboard Systems. Reading, MA: Addison-Wesley.

46. Ernst G.W., Newell A. (1969). GPS; A Case Study in Generality and Problem Solving. New York: Academic Press.

47. Esposito F., Malerba D., Semeraro G. (1997). A comparative analysis of methods for pruning decision trees. IEEE Trans. Pattern Analysis and Machine Intelligence, 19: 416-491.

48. Fallings В., Struss P. (eds) (1992). Recent Advances in Qualitative Physics.
Cambridge, MA: MIT Press.

49. Fikes R.E., Nilsson N.J. (1971). STRIPS: a new approach to the application of
theorem proving to problem solving. Artificial Intelligence, 2: 189-208.

50. Fikes R.E., Nilsstxn N.J. (1993). STHJPS. a introspective. Artefteial InMltes-nrs, 59: 227-232.

51. Flach P. (1994). Simply Logical: Intelligent Reasoning by Example. Chichester, UK: Wiley.

52. Forbus K,, Falkenhainer B.C. (1992). Self-explanatory simulations: integrating
qualitative and quantitative knowledge. См. [48].

53. Forbus K.D. (19S4). Qualitative process theory. Artificial Intelligence, 24: 85-168.

54. Frey P.W. (ed.) (1983). Chess Skill in Man and Machine (second edition). Berlin: Sp ringer-Verlag.

55. Garey M.R, Johnson D.S. (1979). Computers and Intractability. W.H. Freeman.

56. Gaschnig J. (1979). Performance measurement and analysis of certain search algorithms, Carnegie-Me lion University: Computer Science Department. Technical Report CMU-CS-79-124 (PhD Thesis).

57. Gazdar G-, ■Mellish C. (1989). Natural Language Processing in Prolog, Harlow: Addison-Wesley.

58. Genesereth M.R, Nilsson N.J. (1987). Logical Foundation of Artificial Intelligence. Palo Alto, CA Morgan Kaufmann.

59. Gillies D. (1996). Artificial Intelligence and Scientific Method. Oxford University Press.

60. Ginsberg M. (1993). Essentials of Artificial Intelligence. San Francisco, CA: Morgan Kaufmann,

61. Gonnet G.H., Baeza-Yates R (1991). Handbook of Algorithms and Data Structures
in Pascal and С (second edition). Addison-Wesley.

62. Hammond P. (1981). Micro-PROLOG for Expert Systems. In: Clark K,L., McCabe, F.G. (eds). Micro PROLOG: Programming in Logic. Englewood Cliffs, NJ: Prentice Hall.

63. Hart P.E., Nilsson N.J., Raphael B. (1968). A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Sciences and Cybernetics, SSC-4(2): 100-107.

Список литературы



64. Hau D.T., Coiera E.W. (1997). Learning qualitative models of dynamic systems. Machine Learning Journal, 26: 177-211.

65. Hsu F.-H., Anantharaman T.S., Campbell M.S., Nowatzyk A. (1990). A grandmaster chess machine. Scientific American, 263: 44-50.

66. Jackson P. (1999). Introduction to Expert Systems, third edition. Harlow: Addison-
Wesley.

67. Jaffar J., Maher M, (1994). Constraint logic programming: a survey. Journal of
Logic Programming, 19-20: 503-581.

68. Jensen F.V. (1996). An Introduction to Bayesian Networks, Berlin: Springer-
Verlag.

69. Kaindl H. (1990). Tree searching algorithms. См. [95].

70. Kanal L., Kumar V. (eds) (1988). Search in Artificial Intelligence, Springer-Verlag.

71. Kearns M.J., Vazirani U.V. (1994). An Introduction to Computational Learning Theory. Cambridge, MA: MIT Press.

72. Kedar-Cabelli S.T., McCarty, L.T. (1987). Explanation-based generalization as resolution theorem proving. In: Proc. 4th Int. Machine Learning Workshop, Irvine, CA Morgan Kauf mann.

73. Kingston J.H. (1998). Algorithms and Data Structures (second edition). Addison-
Wesley.

74. Knuth D.E., Moore R.W. (1975). An analysis of alpha-beta pruning. Artificial
Intelligence, 6: 293-326.

75. Kodratoff Y., Michalski R.S. (1990). Machine Learning: An Artificial Intelligence
Approach, Vol. III. Morgan Kaufmann.

76. Kolodner J.L. (1993). Case-Based Reasoning. San Francisco, CA Morgan Kaufmann.

77. Kononenko I., Lavrac1 N. (1988). Prolog through Examples: A Practical Programming Guide. Wilmslow, UK: Sigma Press.

78. Korf R.E. (1985). Depth-first iterative deepening: an optimal admissible tree search. Artificial Intelligence, 27: 97-109.

79. Korf R.E. (1993). Linear-space best-first search. Artificial Intelligence, 62: 41-78.

80. Kowalski R (1979). Logic for Problem Solving. North-Holland.

81. Kowalski R (1980). Logic, for Problem Solving. North-Ho Hand.

82. Kowalski R., Sergot M. (1986). A logic-based calculus of events. New Generation Computing, 4: 67-95.

83. Kraan I.E., Richards B.L., Kuipers B.J, (1991). Automatic abduction of qualitative models, Proc. 15th Int. Workshop on Qualitative Reasoning about Physical Systems.

84. Kuipers B.J. (1986). Qualitative simulation. Artificial Intelligence Journal, 29, 289-338 (См. также: [167]).

85. Kuipers B.J. (1994). Qualitative Reasoning: Modeling and Simulation with. Incomplete Knowledge. Cambridge, MA: MIT Press.

86. LavraE N., Dzeroski S. (1994). Inductive Logic Programming: Techniques and Applications. Chichester: Ellis Horwood.

87. Le T.V. (1993). Techniques of Prolog Programming. John Wiley & Sons.

88. Lenat D.B. (1982). AM: discovery in mathematics as heuristic search. In: Davis R, Lenat D.B. (eds). Knowledge-Based Systems in Artificial Intelligence. McGraw-Hill.

89. Lloyd J.W. (1991). Foundations of Logic Programming, second edition. Berlin:
Springer-Verlag.

614 Список литературы

90. Luger G.F., Stubblefield W.A. (1998). Artificial Intelligence, third edition. Harlow:
Addison-Wesley.

91. Mackworth A.K. (1992). Constraint satisfaction. In: Shapiro S.C. (ed.) Encyclopedia of Artificial Intelligence, second edition. New York: Wiley.

92. Makarovi£ A. (1991). Parsimony in Model-Based Reasoning. Enschede: Twenle University, PhD Thesis, ISBN 90-9004255-5.

93. Markus C. (1986). Prolog Programming. Addison-Wesley.

94. Marriott K> Stuckey P.J. (1998). Programming with Constraints: an Introduction. Cambridge, MA: The MIT Press.

95. Marsland A.T., Schaeffer J. (eds) (1990). Computers. Chess and Cognition. Berlin: Springer-Verlag.

96. Michalski R.S. (1983). A theory and methodology of inductive learning. In: Michalski R.S., Carbonell J.G., Mitchell T.M. (eds). Machine Learning: An Artificial Intelligence Approach. Tioga Publishing Company.

97. Michalski R.S., Bratko I., Kubat M. (eds) (1998). Machine Learning and Data Mining: Methods and Applications. Wiley.

98. Michalski R.S., Carbonell J.G., Mitchell T.M. (eds) (1983).Machine Learning: An Artificial Intelligence Approach. Palo Alto, CA: Tioga Publishing Company.

99. Michalski R.S., Carbonell J.G., Mitchell T.M. (eds)(1986). Machine Learning: An Artificial Intelligence Approach, Volume II Los Altos, CA: Morgan Kaufmann.

100. Michie D. (1986). The superarticulacy phenomenon in the context of software manufacture. In: Proc. of the Royal Society, London. A405:189-212. См. также: Michie D., Bratko L. Expert Systems: Automating Knowledge Acquisition. Harlow, England: Addison-Wesley.

101. Michie D. (ed.) (1979). Expert Systems in the Microelectronic Age. Edinburgh University Press.

102. Michie D., Ross R. (1970). Experiments with the adaptive graph traverser.

Machine Intelligence, 5: 301-308.

103. Minsky M. (1975). A framework for representing knowledge. In: Winston P. (ed.). The Psychology of Computer Vision. McGraw-Hill.

104. Mitchell T.M. (1982). Generalization as search. Artificial Intelligence, 18: 203-226.

105. Mitchell T.M. (1997). Machine Learning. McGraw-Hill.

106. Mitchell T.M., Keller R.M., Kedar-Cabelli S.T. (1986). Explanation-based generalisation: a unifying view. Machine Learning, 1: 47-80.

107. Moss C. (1994). Prolog++: The Power of Object-Oriented and Logic Programming. Harlow: Addison-Wesley.

108. Mozeti£ I. (1987a). Learning of qualitative models. In: Bratko I., Lavrac N. (eds). Progress in Machine Learning. Wilmslow, UK: Sigma Press.

109. MozetiC I. (1987b). The role of abstractions in learning qualitative models. Proc. Fourth Int. Workshop on Machine Learning, Irvine, CA: Morgan Kaufmann.

110. Muggleton S. (1991). Inductive logic programming. New Generation Computing, 8: 295-318.

111.Muggleton S. (1995). Inverse entailment and Progol. New Generation Computing, 13: 245-286.

112.Muggleton S. (ed.) (1992). Inductive Logic Programming. London: Academic Press.

113. Newell A., Shaw J.C., Simon HA. (1960).Report on a general problem-solving program for a computer. Information Processing: Proc. Int. Conf. on Information Processing. Paris: UNESCO.

Список литературы



114. NibLett Т., Bratko I. (1986). Learning decision rules in noisy domains. In: Bramer MA (ed.). Research and Development in Expert Systems III. Cambridge University Press.

115. Nilsson N.J. (1971). Problem-Solving Methods in Artificial Intelligence. McGraw-Hill.

116. Nilsson N.J. (1980). Principles of Artificial Intelligence. Palo Alto, CA: Tioga; also Berlin: Springer-Verlag.

117. O'Keefe, R. A. (1990). The Craft of Prolog. Cambridge, MA: MIT Press.

118. Pearl J. (1984), Heuristics: Intelligent Search Strategies for Computer Problem
Solving, Reading, MA Addison-Wesley,

119. Pearl J. (1988), Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Mateo, CA Morgan Kaufmann.

120. Pereira F.C.N., Shieber S.M. (1987). Prolog and Natural Language Analysis. Menlo Park, CA: CSLI - Center for the Study of Language and Information,

121. Pereira F.C.N., Warren D.H.D. (1980). Definite clause grammars for language analysis - a survey of the formalism and comparison with augmented transition networks. Artificial Intelligence, 13: 231-278.

122. Pereira L.M., Pereira F., Warren D.H.D. (1978). User's Guide to DECsystcm-10 Prolog. University of Edinburgh: Department of Artificial Intelligence.

123. Pitrat J. (1977). A chess combination program which uses plans. Artificial Intelligence, 8: 275-321.

124. Platt A, Schaeffer J., Pijls W. de Bruin A. (1996). Best-first fixed-depth mimmax algorithms. Artificial Intelligence, 87: 255-293.

125. Plotkin G. (1969). A note on inductive generalisation. In: Meltzer В., Michie D. (eds). Machine Intelligence, 5. Edinburgh University Press.

126. Poole D., Mackworth A, Gaebel R (1998). Computational Intelligence: A Logical Approach. Oxford University Press.

127. Quinlan J.R. (1979). Discovering rules by induction from large collections of examples. In: Michie D. (ed.). Expert Systems in the Microelectronic Age. Edinburgh University Press.

128. Quinlan J.R. (1986). Induction of decision trees. Machine Learning, 1: 81-106.

129. Quinlan J.R. (1990). Learning logical definitions from relations. Machine Learning, 5: 239-266.

130. Reiter J. (1980). AL/X: An Expert System Using Plausible Inference. Oxford: Intelligent Terminals Ltd.

131. Robinson A.J. (1965). A machine-oriented logic based on the resolution principle. JACM, 12: 23-41.

132. Ross P. (1989), Advanced Prolog Techniques and Examples. Harlow: Addison-Wesley.

133. Russell S.J., Norvig P. (1995). Artificial Intelligence: A Modern Approach. Englewood Cliffs, NJ: Prentice Hall.

134. Sacerdoti E.D. (1977). A Structure for Plans and Behauior. New York: Elsevier.

135. Sacks E.P., Doyle J. (1991). Prolegomena to any future qualitative physics. New Jersey: Princeton University, Report CS-TR-314-91. См. также: Computational Intelligence Journal.

136. Samnmt C, Banerji R. (1986). Learning concepts by asking questions. In: Michalski R.S., Carbonell J., Mitchell T. (eds). Machine Learning: An Artificial Intelligence Approach. Volume II San Mateo, CA: Morgan Kaufmann,



Список литературы

137. Samuel A.L. (1959). Some studies in machine learning using the game of checkers. IBM Journal of Research and Development, 3: 211-229. См. также: Feigenbaum E.A., Feldman L (eds). Computers and Thought. McGraw-Hill, 1963.

138. Say A.C.C. (1998a). L'Hopital's filter for QSIM. IEEE Trans. Pattern Analysis and Machine Intelligence, 20: 1-8.

139. Say A.C.C. (1998b). Improved infinity filtering in qualitative simulation. Proc, Qualitative Reasoning Workshop 98, Menb Park, CA AAAI Press.

140. Say A.C.C, Kuru S. (1993). Improved filtering for the QSIM algorithm. IEEE Trans. Pattern Analysis and Machine Intelligence, 15: 967-971.

1-41. Say A.C.C, Kuru S. (1996). Qualitative system identification: deriving structure from behavior. Artificial Intelligence, 83: 75-141.

142. Shafer G., Pearl J. (eds) (1990). Readings in Uncertain Reasoning. San Mateo, CA: Morgan Kaufmann.

143. Shanahan M. (1997). Solving the Frame Problem: Mathematical Investigation of the Common Sense Law of Inertia. MIT Press, Cambridge, MA.

144. Shannon C.E. (1950). Programming a computer for playing chess. Philosophical Magazine, 41: 256-275.

145. Shapiro A. (1987). Structured Induction in Expert Systems, Glasgow: Turing Institute Press, совместно с Addison-Wesley.

146. Shapiro E. (1983). Algorithmic Program Debugging. Cambridge, MA: MIT Press.

147. Shoham Y. (1994). Artificial Intelligence Techniques in Prolog. San Francisco, CA: Morgan Kaufmann.

148. Shortliffe E. (1978). Computer-based Medical Consultations: MYCIN. Elsevier.

149. Shrager J., Langley P. (1990). Computational Models of Scientific Discovery and Theory Formation. San Mateo, CA: Morgan Kaufmann.

150. SICStus Prolog Users' Manual (1999). Stockholm: Swedish Institute of Computer Science, http://www.sics.se/sicstus.html.

151. Slagle J.R. (1963). A heuristic program that solves symbolic integration problems in freshman calculus. In: Feigenbaum E., Feldman J. (eds). Computers and Thought. McGraw-Hill.

152. Stabler E.P. (1986). Object-oriented programming in Prolog. AJ Expert. (October 1986): 46-57.

153. Sterling L (1990), The Practice of Prolog. Cambridge, MA: MIT Press.

154. Sterling L., Shapiro E. (1994). The Art of Prolog, second edition. Cambridge, MA: MIT Press.

155. Sutton R.S., Barto A.G. (1998). Reinforcement Learning: An Introduction, Cambridge, MA: MIT Press.

156. Szpakowicz S. (1987). Logic grammars. BYTE. (August 1987): 185-195.

157. Tate A. (1977). Generating project networks. Proc. IJCAI 77. Cambridge, MA.

158. Touretzky D.S. (1986). The Mathematics of Inheritance Systems. Los Altos, CA: Morgan Kaufmann.

159. van Emden M. (1981). Logic Programming Newsletter, 2.

160. van Emden M. (1982). Red and green cuts. Logic Programming Newsletter, 2.

161. Van Hentenryck P. (1989). Constraint Satisfaction in Logic Programming. Cambridge, MA: MIT Press.

162. Varsek A. (1991). Qualitative model evolution. Proc. IJCAI-91, Sydney 1991.

Список литературы



163. Waldinger R.J. (1977). Achieving several goals simultaneously. In: Hlcock E.W., Michie D. (eds). Machine Intelligence 8. Chichester: Ellis Horwood. Distributed by Wiley.

164. Warren D.H.D. (1974). WARPLAN: A System for Generating Plans. University of Edinburgh: Department of Computational Logic, Memo 76.

165. Waterman D.A., Hayes-Roth F. (eds) (197S). Pattern-Directed Inference Systems. London: Academic Press.

166. Weld D. (1994). An introduction to least commitment planning. AI Magazine, 15: 27-61.

167. Weld D.S., de Kleer J. (1990). Readings in Qualitative Reasoning about Physical Systems, San Mateo, CA Morgan Kaufmann.

168. Wilkins D.E. (1980). Using patterns and plans in chess. Artificial Intelligence, 14: 165-203.

169. Winston P.H. (1975). Learning structural descriptions from examples. In: Winston P.H. (ed.). The Psychology of Computer Vision. McGraw-Hill.

170. Winston P,H. (1984). Artificial Intelligence, second edition. Reading, MA: Addison-Wesley.

171. Winston P.H. (1992). Artificial Intelligence, third edition. Addison-Wesley.

172. Wirth N. (1976). Algorithms + Data Structures = Programs. Englewood Cliffs, NJ:
Prentice Hall.

618 Список литературы

Наши рекомендации