Теория вопроса. Броуновское движение – непрерывное, беспорядочное перемещение малых частиц вещества, взвешенных в жидкости или газе

Броуновское движение – непрерывное, беспорядочное перемещение малых частиц вещества, взвешенных в жидкости или газе, - представляет собой одно из наиболее ярких и доступных наблюдению подтверждений основных положений молекулярно-кинетической теории вещества.

Взвешенная в жидкости, броуновская частица совершает хаотическое движение под действием ударов молекул. Вследствие их хаотического движения, импульс, передаваемый частице за макроскопически малый промежуток времени, является случайной величиной. Следовательно, случайной величиной будет и сила Теория вопроса. Броуновское движение – непрерывное, беспорядочное перемещение малых частиц вещества, взвешенных в жидкости или газе - student2.ru , действующая на частицу. Согласно второму закону Ньютона, уравнение движения частицы имеет вид

Теория вопроса. Броуновское движение – непрерывное, беспорядочное перемещение малых частиц вещества, взвешенных в жидкости или газе - student2.ru (1)

Сила Теория вопроса. Броуновское движение – непрерывное, беспорядочное перемещение малых частиц вещества, взвешенных в жидкости или газе - student2.ru возникает вследствие ударов молекул, и поскольку частица движется, то в направлении противоположном движению она получает в среднем больше ударов, чем с обратной стороны. Поэтому силу Теория вопроса. Броуновское движение – непрерывное, беспорядочное перемещение малых частиц вещества, взвешенных в жидкости или газе - student2.ru необходимо представить в виде двух слагаемых: Теория вопроса. Броуновское движение – непрерывное, беспорядочное перемещение малых частиц вещества, взвешенных в жидкости или газе - student2.ru - случайной силы со средним значением равным нулю < Теория вопроса. Броуновское движение – непрерывное, беспорядочное перемещение малых частиц вещества, взвешенных в жидкости или газе - student2.ru > = 0, и силы вязкого трения пропорциональной скорости частицы.

Следуя Эйнштейну Теория вопроса. Броуновское движение – непрерывное, беспорядочное перемещение малых частиц вещества, взвешенных в жидкости или газе - student2.ru где b – подвижность частицы.

Теория вопроса. Броуновское движение – непрерывное, беспорядочное перемещение малых частиц вещества, взвешенных в жидкости или газе - student2.ru (2)

Для шарообразной частицы подвижность была теоретически вычислена Стоксом:

Теория вопроса. Броуновское движение – непрерывное, беспорядочное перемещение малых частиц вещества, взвешенных в жидкости или газе - student2.ru

где η – вязкость жидкости, a – радиус частицы.

Уравнение движения (2) в проекции на некоторое направление х будет

Теория вопроса. Броуновское движение – непрерывное, беспорядочное перемещение малых частиц вещества, взвешенных в жидкости или газе - student2.ru или Теория вопроса. Броуновское движение – непрерывное, беспорядочное перемещение малых частиц вещества, взвешенных в жидкости или газе - student2.ru (3)

Очевидно, что средние значения проекций ускорения Теория вопроса. Броуновское движение – непрерывное, беспорядочное перемещение малых частиц вещества, взвешенных в жидкости или газе - student2.ru и силы Теория вопроса. Броуновское движение – непрерывное, беспорядочное перемещение малых частиц вещества, взвешенных в жидкости или газе - student2.ru равны нулю. Умножим все члены уравнения (3) на х:

Теория вопроса. Броуновское движение – непрерывное, беспорядочное перемещение малых частиц вещества, взвешенных в жидкости или газе - student2.ru  

Используя очевидные равенства Теория вопроса. Броуновское движение – непрерывное, беспорядочное перемещение малых частиц вещества, взвешенных в жидкости или газе - student2.ru и Теория вопроса. Броуновское движение – непрерывное, беспорядочное перемещение малых частиц вещества, взвешенных в жидкости или газе - student2.ru выражение (3) приводим к виду

Теория вопроса. Броуновское движение – непрерывное, беспорядочное перемещение малых частиц вещества, взвешенных в жидкости или газе - student2.ru (4)

Если предположить, что к системе броуновских частиц применима эргодическая гипотеза, то можно провести усреднение выражения (4) по ансамблю частиц. Поскольку операции усреднения и дифференцирования коммуникативны (перестановочны), то получим

Теория вопроса. Броуновское движение – непрерывное, беспорядочное перемещение малых частиц вещества, взвешенных в жидкости или газе - student2.ru (5)

Вследствие того, что броуновская частица находится в тепловом равновесии со средой, то по теореме о равнораспределении энергии по степеням свободы, Теория вопроса. Броуновское движение – непрерывное, беспорядочное перемещение малых частиц вещества, взвешенных в жидкости или газе - student2.ru . Кроме того, поскольку смещение x частицы и сила Теория вопроса. Броуновское движение – непрерывное, беспорядочное перемещение малых частиц вещества, взвешенных в жидкости или газе - student2.ru являются независимыми случайными величинами, то Теория вопроса. Броуновское движение – непрерывное, беспорядочное перемещение малых частиц вещества, взвешенных в жидкости или газе - student2.ru . Обозначив Теория вопроса. Броуновское движение – непрерывное, беспорядочное перемещение малых частиц вещества, взвешенных в жидкости или газе - student2.ru в (5) получим неоднородное дифференциальное уравнение

Теория вопроса. Броуновское движение – непрерывное, беспорядочное перемещение малых частиц вещества, взвешенных в жидкости или газе - student2.ru (6)

общее решение которого имеет вид

Теория вопроса. Броуновское движение – непрерывное, беспорядочное перемещение малых частиц вещества, взвешенных в жидкости или газе - student2.ru (7)

где Теория вопроса. Броуновское движение – непрерывное, беспорядочное перемещение малых частиц вещества, взвешенных в жидкости или газе - student2.ru – значение Теория вопроса. Броуновское движение – непрерывное, беспорядочное перемещение малых частиц вещества, взвешенных в жидкости или газе - student2.ru в начальный момент времени, которое можно положить равным нулю. С учетом этого, из (7) следует

Теория вопроса. Броуновское движение – непрерывное, беспорядочное перемещение малых частиц вещества, взвешенных в жидкости или газе - student2.ru  

и

Теория вопроса. Броуновское движение – непрерывное, беспорядочное перемещение малых частиц вещества, взвешенных в жидкости или газе - student2.ru (8)

Если Теория вопроса. Броуновское движение – непрерывное, беспорядочное перемещение малых частиц вещества, взвешенных в жидкости или газе - student2.ru , то разложив экспоненту в ряд Маклорена до второго члена включительно, получим

Теория вопроса. Броуновское движение – непрерывное, беспорядочное перемещение малых частиц вещества, взвешенных в жидкости или газе - student2.ru  

Т.е. при малых промежутках времени t броуновская частица движется равномерно со средней скоростью теплового движения. При Теория вопроса. Броуновское движение – непрерывное, беспорядочное перемещение малых частиц вещества, взвешенных в жидкости или газе - student2.ru из (8) следует, что

Теория вопроса. Броуновское движение – непрерывное, беспорядочное перемещение малых частиц вещества, взвешенных в жидкости или газе - student2.ru (9)

Так как r2= x2+ y2+ z2, то <r2>=< x2>+< y2>+< z2>, вследствие изотропности броуновского движения < x2>=< y2>=<z2>. Поэтому

Теория вопроса. Броуновское движение – непрерывное, беспорядочное перемещение малых частиц вещества, взвешенных в жидкости или газе - student2.ru (10)

Таким образом, средний квадрат смещения броуновских частиц пропорционален времени t наблюдения (формула Эйнштейна).

Наши рекомендации