Характеристика файловой системы и драйверов внешних устройств операционной системы

Файловая система (ФС) является важной частью любой операционной системы, которая отвечает за организацию хранения и доступа к информации на каких-либо носителях. Файловая система позволяет пользователю оперировать с более удобным для него понятием - файл. Система берет на себя организацию взаимодействия программ с файлами, расположенными на дисках. Для идентификации файлов используются имена. Современные файловые системы предоставляют пользователям возможность давать файлам достаточно длинные мнемонические названия.

Под каталогом в ФС понимается, с одной стороны, группа файлов, объединенных пользователем исходя из некоторых соображений, с другой стороны каталог - это файл, содержащий системную информацию о группе составляющих его файлов. Файловые системы обычно имеют иерархическую структуру, в которой уровни создаются за счет каталогов, содержащих информацию о файлах и каталогах более низкого уровня.

В широком смысле понятие "файловая система" включает:

ü совокупность всех файлов на диске,

ü наборы служебных структур данных, используемых для управления файлами, такие как, например, каталоги файлов, дескрипторы файлов, таблицы распределения свободного и занятого пространства на диске,

ü комплекс системных программных средств, реализующих управление файлами, в частности операции по созданию, уничтожению, чтению, записи, именованию файлов, установке атрибутов и уровней доступа, поиску и т.д.

Различие между файловыми системами заключается, в основном, в способах распределения пространства между файлами на диске и организации на диске служебных областей.

Современные операционные системы стремятся обеспечить пользователя возможностью работать одновременно с несколькими файловыми системами. В этом случае ФС рассматривается как часть подсистемы ввода-вывода. В большинстве операционных систем (Windows 95, NT, OS/2) реализуется механизм переключения файловых систем (File System Switch, FSS), позволяющий поддерживать различные типы ФС. В соответствии с этим подходом информация о файловых системах и файлах разбивается на две части – зависимую от ФС и не зависимую. FSS обеспечивает интерфейс между ядром и файловой системой, транслируя запросы ядра в операции, зависящие от типа файловой системы. При этом ядро имеет представление только о независимой части ФС.

Файловая система представляет многоуровневую структуру, на верхнем уровне которой располагается так называемый переключатель файловых систем (в Windows, такой переключатель называется устанавливаемым диспетчером файловой системы - installable filesystem manager, IFS). Он обеспечивает интерфейс между приложением и конкретной файловой системой, к которой обращается приложение. Переключатель файловых систем преобразует запросы к файлам в формат, воспринимаемый следующим уровнем - уровнем драйверов файловых систем. Для выполнения своих функций драйверы файловых систем обращаются к драйверам конкретных устройств хранения информации. Клиент-серверные приложения предъявляют повышенные требования к производительности файловых систем. Современные файловые системы должны обеспечивать эффективный доступ к файлам, поддержку носителей данных достаточно большого объема, защиту от несанкционированного доступа к данным и сохранение целостности данных. Под целостностью данных подразумевается способность ФС обеспечивать отсутствие ошибок и нарушений согласованности в данных, а также восстанавливать поврежденные данные.

Драйвер (driver) представляет собой специализированный программный модуль, управляющий внешним устройством. Драйверы обеспечивают единый интерфейс для доступа к различным устройствам, тем самым устраняя зависимость пользовательских программ и ядра ОС от особенностей аппаратуры.

Большинство ОС общего назначения запрещают пользовательским программам непосредственный доступ к аппаратуре. Это делается для повышения надежности и обеспечения безопасности в многопользовательских системах. В таких системах драйверы являются для прикладных программ единственным способом доступа к внешнему миру.
Еще одна важная функция драйвера - это взаимоисключение доступа к устройству в средах с вытесняющей многозадачностью. Допускать одновременный неконтролируемый доступ к устройству нескольких параллельно исполняющихся процессов просто нельзя, потому что для большинства внешних устройств даже простейшие операции ввода-вывода не являются атомарными.

Например, в большинстве аппаратных реализаций последовательного порта RS232 передача байта состоит из четырех шагов: записи значения в регистр данных, записи команды "передавать" в регистр команды, ожидания прерывания по концу передачи и проверки успешности передачи путем считывания статусного регистра устройства. Нарушение последовательности шагов может приводить к неприятным последствиям — например, перезапись регистра данных после подачи команды, но до завершения передачи, может привести к остановке передачи или, что еще хуже, передаче искаженных данных и т. д.

Нельзя также забывать о неприятностях более высокого уровня — например, смешивании вывода разных процессов на печати или данных — на устройстве внешней памяти. Поэтому оказывается необходимо связать с каждым внешним устройством какой-то разграничитель доступа во времени. В современных ОС эта функция возлагается именно на драйвер. Обычно одна из нитей драйвера представляет собой процесс-монитор, выполняющий асинхронно поступающие запросы на доступ к устройству.

Драйверы обычно разрабатываются не поставщиками операционной системы, а сторонними фирмами — разработчиками и изготовителями периферийного
оборудования. Поэтому интерфейс драйвера является ничуть не менее внешним, чем то, что обычно считается внешним интерфейсом ОС — интерфейс системных вызовов. Соответственно, к нему предъявляются те же требования, что и к любому другому внешнему интерфейсу: он должен быт умопостижимым, исчерпывающе документированным и стабильным — меняться непредсказуемо от одной версии ОС к другой. Идеальным вариантом была бы полная совместимость драйверов хотя бы снизу вверх, чтобы драйвер предыдущей версии ОС мог использоваться со всеми последующими версиями.
Потеря совместимости в данном случае означает, что все независимые изготовители оборудования должны будут обновить свои драйверы. Организация такого обновления оказывается сложной, неблагодарной и часто попросту невыполнимой задачей — например, потому, что изготовитель оборудования уже не существует как организация или отказачся от поддержки данного устройства.

Отказ от совместимости драйверов на практике означает "брошенное" периферийное оборудование и, как следствие, "брошенных" пользователей, которые оказываются вынуждены либо отказываться от установки новой системы, либо заменять оборудование. Оба варианта, естественно, не улучшают отношения пользователей к поставщику ОС, поэтому многие поставщики просто не могут позволить себе переделку подсистемы ввода-вывода. Таким образом, интерфейс драйвера часто оказывается наиболее консервативной частью ОС.

26. Основы информационной безопасности. Шифрование и дешифрование.

Под информационной безопасностью подразумевается техника защиты информации от преднамеренного или случайного несанкционированного доступа и нанесения тем самым вреда нормальному процессу документооборота и обмена данными в системе, а также хищения, модификации и уничтожения информации.

Два варианта определения понятия шифрование кому, какой нравиться. Этот. â

Одной из основных мер защиты данных в системе является их шифрование, т.е. такое пре­образование, которое исключает их использование в соответствии с их смыслом и содержанием. Алгоритмы шифрования (дешиф­рования) представляют собой инструмент, с помощью которого такая защита возможна, поэтому они всегда секретны. Шифрование может осуществляться при передаче информа­ции по каналам передачи данных, при сохранении информации в базах данных, при обращении к базам данных с соответствую­щими запросами, на стадии интерпретации результатов обработ­ки информации и т.д. На всех этих этапах и стадиях существуют специфические особенности применения шифров.

Или этот. â

Шифрование — преобразование информации в целях сокрытия от неавторизованных лиц, с предоставлением, в это же время, авторизованным пользователям доступа к ней. Главным образом, шифрование служит задаче соблюдения конфиденциальности передаваемой информации. Важной особенностью любого алгоритма шифрования является использование ключа, который утверждает выбор конкретного преобразования из совокупности возможных для данного алгоритма.

Пользователи являются авторизованными, если они обладают определенным аутентичным ключом. Вся сложность и, собственно, задача шифрования состоит в том, как именно реализован этот процесс. В целом, шифрование состоит из двух составляющих — зашифрование и расшифрование.

С помощью шифрования обеспечиваются три состояния безопасности информации:

· Конфиденциальность. Шифрование используется для сокрытия информации от неавторизованных пользователей при передаче или при хранении.

· Целостность. Шифрование используется для предотвращения изменения информации при передаче или хранении.

· Идентифицируемость. Шифрование используется для аутентификации источника информации и предотвращения отказа отправителя информации от того факта, что данные были отправлены именно им.

Для того чтобы прочитать зашифрованную информацию, принимающей стороне необходимы ключ и дешифратор(устройство реализующее алгоритм расшифровывания). Идея шифрования состоит в том, что злоумышленник, перехватив зашифрованные данные и не имея к ним ключа, не может ни прочитать, ни изменить передаваемую информацию. Кроме того, в современных криптосистемах(с открытым ключом) для шифрования, расшифрования данных могут использоваться разные ключи. Однако, с развитием криптоанализа, появились методики позволяющие дешифровать закрытый текст не имея ключа, они основаны на математическом анализе перехваченных данных.

27. Цифровой логический уровень ЭВМ. Логика, логические связи и таблицы истинности. Работа с логическими операциями.

Цифровой логический уровень ЭВМ – уровень логических схем базовой системы элементов.

  Логика – это древнейшая наука, изучающая правильность суждений, рассуждений и доказательств. Слово логика означает совокупность правил, которым подчиняется процесс мышления. Сам термин "логика" происходит от древнегреческого logos, означающего "слово, мысль, понятие, рассуждение, закон". Логика как наука позволяет строить формальные модели окружающего мира, отвлекаясь от содержательной стороны. Таблица истинности — это таблица, описывающая логическую функцию. Под «логической функцией» в данном случае понимается функция, у которой значения переменных (параметров функции) и значение самой функции выражают логическую истинность. Например, в двузначной логике они могут принимать значения «истина» либо «ложь» (true либо false, 1 либо 0). Высказывание, включающее другие высказывания, называют сложным. Для образования сложных высказываний используют логические операции (связки): Инверсия (отрицание) Инверсия — это логическая операция, образующая сложное высказывание, истинное тогда и только тогда, когда исходное высказывание ложно. В выражениях обозначается A или A. Читается «НЕ» (например, «не А»). Конъюнкция (логическое умножение) Конъюнкция — это логическая операция, образующая сложное высказывание, истинное тогда и только тогда, когда истинны оба исходных высказывания. В выражениях обозначается A ∧ B или A & B (знак может не указываться — AB). Читается «И» (например, «А и Б») Дизъюнкция (логическое сложение) Дизъюнкция — это логическая операция, образующая сложное высказывание, истинное тогда, когда истинно хотя бы одно из исходных высказываний. В выражениях обозначается A ∨ B, иногда A + B. Читается «ИЛИ» (например, «А или Б») Импликация (следование) Импликация — это логическая операция, образующая сложное высказывание, ложное тогда и только тогда, когда первое исходное высказывание истинно, а второе — ложно. В выражениях обозначается A ⇒ B или A → B. Читается «ЕСЛИ...ТО» (например, «если А, то Б») Эквивалентность (равнозначность) Эквивалентность — это логическая операция, образующая сложное высказывание, истинное тогда и только тогда, когда значения исходных высказываний совпадают. В выражениях обозначается A ⇔ B или A ≡ B. Читается «ТОГДА И ТОЛЬКО ТОГДА, КОГДА» (например, «А тогда и только тогда, когда Б»)    
28. Криптографический метод шифрования.

Криптографические методы защиты информации - это специальные методы шифрования, кодирования или иного преобразования информации, в результате которого ее содержание становится недоступным без предъявления ключа криптограммы и обратного преобразования. Криптографический метод защиты, безусловно, самый надежный метод защиты, так как охраняется непосредственно сама информация, а не доступ к ней (например, зашифрованный файл нельзя прочесть даже в случае кражи носителя). Данный метод защиты реализуется в виде программ или пакетов программ.

Любой криптографический метод характеризуется такими показателями, как стойкость и трудоемкость:

ü Стойкость метода - это тот минимальный объем зашифрованного текста, статистическим анализом которого можно вскрыть исходный текст. Таким образом стойкость шифра определяет допустимый объем информации, зашифровываемый при использовании одного ключа.

ü Трудоемкость метода - определяется числом элементарных операций, необходимых для шифрования одного символа исходного текста.

Основные требования к криптографическому закрытию информации:

1. Сложность и стойкость криптографического закрытия данных должны выбираться в зависимости от объема и степени секретности данных.

2. Надежность закрытия должна быть такой, чтобы секретность не нарушалась даже в том случае, когда злоумышленнику становится известен метод шифрования.

3. Метод закрытия, набор используемых ключей и механизм их распределения не должны быть слишком сложными.

4. Выполнение процедур прямого и обратного преобразований должно быть формальным. Эти процедуры не должны зависеть от длины сообщений.

5. Ошибки, возникающие в процессе преобразования не должны распространяться по системе.

6. Вносимая процедурами защиты избыточность должна быть минимальной.

29.Организация машины: принципы фон Неймана ,управляющее устройство, системы команд и типы команд. Ввод/вывод и прерывания. Принципы фон Неймана

В 1946 году Д. фон Нейман, Г. Голдстайн и А. Беркс в своей совместной статье изложили новые принципы построения и функционирования ЭВМ. В последствие на основе этих принципов производились первые два поколения компьютеров. В более поздних поколениях происходили некоторые изменения, хотя принципы Неймана актуальны и сегодня.

Наши рекомендации