Теория метода. Исходя из (9) смещение частицы в плоскости xOy равно = + = . , (11)
Исходя из (9) смещение частицы в плоскости xOy равно = + = .
, | (11) |
где .
Проверим выполнение формулы Эйнштейна (11) на опыте. Получим значения для различных t и построим график, на котором ординатами точек будут значения , а их абсциссами – длительности промежутков времени t, в течение которых проводилось данное усреднение. Прямая пропорциональная зависимость между этими величинами подтвердит справедливость формулы Эйнштейна.
Для каждого нового значения t нет необходимости делать свою выборку смщений Δs. Получив лишь одну выборку координат положения частицы через равные промежутки времени t (предположим, мы сделали п измерений), в качестве значений t можно взять, например, следующие значения: t1 =t, t2 =2t, t3 =3t, t4 =4t. Тогда соответствующие значения среднеквадратичных смещений частицы из начального положения будут вычисляться так, как указано в Таблице 1.
Таблица.1 Пример обработки результатов измерений.