Мультипроцессорные компьютеры
В мультипроцессорных компьютерах имеется несколько процессоров, каждый из которых может относительно независимо от остальных выполнять свою программу. В мультипроцессоре существует общая для всех процессоров операционная система, которая оперативно распределяет вычислительную нагрузку между процессорами. Взаимодействие между отдельными процессорами организуется наиболее простым способом - через общую оперативную память.
Сам по себе процессорный блок не является законченным компьютером и поэтому не может выполнять программы без остальных блоков мультипроцессорного компьютера - памяти и периферийных устройств. Все периферийные устройства являются для всех процессоров мультипроцессорной системы общими. Территориальную распределенность мультипроцессор не поддерживает - все его блоки располагаются в одном или нескольких близко расположенных конструктивах, как и у обычного компьютера.
Основное достоинство мультипроцессора - его высокая производительность, которая достигается за счет параллельной работы нескольких процессоров. Так как при наличии общей памяти взаимодействие процессоров происходит очень быстро, мультипроцессоры могут эффективно выполнять даже приложения с высокой степенью связи по данным.
Еще одним важным свойством мультипроцессорных систем является отказоустойчивость, то есть способность к продолжению работы при отказах некоторых элементов, например процессоров или блоков памяти. При этом производительность, естественно, снижается, но не до нуля, как в обычных с истемах, в которых отсутствует избыточность.
Многомашинные системы
Многомашинная система - это вычислительный комплекс, включающий в себя несколько компьютеров (каждый из которых работает под управлением собственной операционной системы), а также программные и аппаратные средства связи компьютеров, которые обеспечивают работу всех компьютеров комплекса как единого целого.
Работа любой многомашинной системы определяется двумя главными компонентами: высокоскоростным механизмом связи процессоров и системным программным обеспечением, которое предоставляет пользователям и приложениям прозрачный доступ к ресурсам всех компьютеров, входящих в комплекс. В состав средств связи входят программные модули, которые занимаются распределением вычислительной нагрузки, синхронизацией вычислений и реконфигурацией системы. Если происходит отказ одного из компьютеров комплекса, его задачи могут быть автоматически переназначены и выполнены на другом компьютере. Если в состав многомашинной системы входят несколько контроллеров внешних устройств, то в случае отказа одного из них, другие контроллеры автоматически подхватывают его работу. Таким образом, достигается высокая отказоустойчивость комплекса в целом.
Помимо повышения отказоустойчивости, многомашинные системы позволяют достичь высокой производительности за счет организации параллельных вычислений. По сравнению с мультипроцессорными системами возможности параллельной обработки в многомашинных системах ограничены: эффективность распараллеливания резко снижается, если параллельно выполняемые задачи тесно связаны между собой по данным. Это объясняется тем, что связь между компьютерами многомашинной системы менее тесная, чем между процессорами в мультипроцессорной системе, так как основной обмен данными осуществляется через общие многовходовые периферийные устройства. Говорят, что в отличие от мультипроцессоров, где используются сильные программные и аппаратные связи, в многомашинных системах аппаратные и программные связи между обрабатывающими устройствами являются более слабыми. Территориальная распределенность в многомашинных комплексах не обеспечивается, так как расстояния между компьютерами определяются длиной связи между процессорным блоком и дисковой подсистемой.
- Основные программные и аппаратные компоненты сети.
Даже в результате достаточно поверхностного рассмотрения работы в сети становится ясно, что вычислительная сеть - это сложный комплекс взаимосвязанных и согласованно функционирующих программных и аппаратных компонентов. Изучение сети в целом предполагает знание принципов работы ее отдельных элементов:
· компьютеров;
· коммуникационного оборудования;
· операционных систем;
· сетевых приложений.
Весь комплекс программно-аппаратных средств сети может быть описан многослойной моделью. В основе любой сети лежит аппаратный слой стандартизованных компьютерных платформ. В настоящее время в сетях широко и успешно применяются компьютеры различных классов - от персональных компьютеров до мэйнфреймов и суперЭВМ. Набор компьютеров в сети должен соответствовать набору разнообразных задач, решаемых сетью.
Второй слой - это коммуникационное оборудование. Хотя компьютеры и являются центральными элементами обработки данных в сетях, в последнее время не менее важную роль стали играть коммуникационные устройства. Кабельные системы, повторители, мосты, коммутаторы, маршрутизаторы и модульные концентраторы из вспомогательных компонентов сети превратились в основные наряду с компьютерами и системным программным обеспечением как по влиянию на характеристики сети, так и по стоимости. Сегодня коммуникационное устройство может представлять собой сложный специализированный мультипроцессор, который нужно конфигурировать, оптимизировать и администрировать.
Третьим слоем, образующим программную платформу сети, являются операционные системы (ОС). От того, какие концепции управления локальными и распределенными ресурсами положены в основу сетевой ОС, зависит эффективность работы всей сети. При проектировании сети важно учитывать, насколько просто данная операционная система может взаимодействовать с другими ОС сети, насколько она обеспечивает безопасность и защищенность данных, до какой степени она позволяет наращивать число пользователей, можно ли перенести ее на компьютер другого типа и многие другие соображения.
Самым верхним слоем сетевых средств являются различные сетевые приложения, такие как сетевые базы данных, почтовые системы, средства архивирования данных, системы автоматизации коллективной работы и др. Очень важно представлять диапазон возможностей, предоставляемых приложениями для различных областей применения, а также знать, насколько они совместимы с другими сетевыми приложениями и операционными системами.
- Основные проблемы построения сетей. Простейший случай взаимодействия двух компьютеров.
При создании вычислительных сетей их разработчикам пришлось решить много проблем. В этом разделе мы рассмотрим только наиболее важные из них, причем в той последовательности, в которой они естественно возникали в процессе развития и совершенствования сетевых технологий.
Механизмы взаимодействия компьютеров в сети многое позаимствовали у схемы взаимодействия компьютера с периферийными устройствами, поэтому начнем рассмотрение принципов работы сети с этого «досетевого» случая.
В самом простом случае взаимодействие компьютеров может быть реализовано с помощью тех же самых средств, которые используются для взаимодействия компьютера с периферией, например, через последовательный интерфейс RS-232C. В отличие от взаимодействия компьютера с периферийным устройством, когда программа работает, как правило, только с одной стороны - со стороны компьютера, в этом случае происходит взаимодействие двух программ, работающих на каждом из компьютеров.
Программа, работающая на одном компьютере, не может получить непосредственный доступ к ресурсам другого компьютера - его дискам, файлам, принтеру. Она может только «попросить» об этом программу, работающую на том компьютере, которому принадлежат эти ресурсы. Эти «просьбы» выражаются в виде сообщений, передаваемых по каналам связи между компьютерами. Сообщения могут содержать не только команды на выполнение некоторых действий, но и собственно информационные данные (например, содержимое некоторого файла).
Рассмотрим случай, когда пользователю, работающему с текстовым редактором на персональном компьютере А, нужно прочитать часть некоторого файла, расположенного на диске персонального компьютера В (рис. 1.7). Предположим, что мы связали эти компьютеры по кабелю связи через СОМ-порты, которые, как известно, реализуют интерфейс RS-232C (такое соединение часто называют нуль-модемным). Пусть для определенности компьютеры работают под управлением MS-DOS, хотя принципиального значения в данном случае это не имеет.
Драйвер СОМ-порта вместе с контроллером СОМ-порта работают примерно так же, как и в описанном выше случае взаимодействия ПУ с компьютером. Однако при этом роль устройства управления ПУ выполняет контроллер и драйвер СОМ-порта другого компьютера. Вместе они обеспечивают передачу по кабелю между компьютерами одного байта информации. (В «настоящих» локальных сетях подобные функции передачи данных в линию связи выполняются сетевыми адаптерами и их драйверами.)
Драйвер компьютера В периодически опрашивает признак завершения приема, устанавливаемый контроллером при правильно выполненной передаче данных, и при его появлении считывает принятый байт из буфера контроллера в оперативную память, делая его тем самым доступным для программ компьютера В. В некоторых случаях драйвер вызывается асинхронно, по прерываниям от контроллера.
Таким образом, в распоряжении программ компьютеров А и В имеется средство для передачи одного байта информации.
- Основные проблемы построения сетей. Проблемы физической передачи данных по линиям связи.
При создании вычислительных сетей их разработчикам пришлось решить много проблем. В этом разделе мы рассмотрим только наиболее важные из них, причем в той последовательности, в которой они естественно возникали в процессе развития и совершенствования сетевых технологий.
Механизмы взаимодействия компьютеров в сети многое позаимствовали у схемы взаимодействия компьютера с периферийными устройствами, поэтому начнем рассмотрение принципов работы сети с этого «досетевого» случая.
Даже при рассмотрении простейшей сети, состоящей всего из двух машин, можно увидеть многие проблемы, присущие любой вычислительной сети, в том числе проблемы, связанные с физической передачей сигналов по линиям связи, без решения которой невозможен любой вид связи.
В вычислительной технике для представления данных используется двоичный код. Внутри компьютера единицам и нулям данных соответствуют дискретные электрические сигналы. Представление данных в виде электрических или оптических сигналов называется кодированием. Существуют различные способы кодирования двоичных цифр 1 и 0, например, потенциальный способ, при котором единице соответствует один уровень напряжения, а нулю - другой, или импульсный способ, когда для представления цифр используются импульсы различной или одной полярности.
В вычислительных сетях применяют как потенциальное, так и импульсное кодирование дискретных данных, а также специфический способ представления данных, который никогда не используется внутри компьютера, - модуляцию (рис. 1.9). При модуляции дискретная информация представляется синусоидальным сигналом той частоты, которую хорошо передает имеющаяся линия связи.
На способ передачи сигналов влияет и количество проводов в линиях связи между компьютерами. Для сокращения стоимости линий связи в сетях обычно стремятся к сокращению количества проводов и из-за этого используют не параллельную передачу всех бит одного байта или даже нескольких байт, как это делается внутри компьютера, а последовательную, побитную передачу, требующую всего одной пары проводов.
Еще одной проблемой, которую нужно решать при передаче сигналов, является проблема взаимной синхронизации передатчика одного компьютера с приемником другого. При организации взаимодействия модулей внутри компьютера эта проблема решается очень просто, так как в этом случае все модули синхронизируются от общего тактового генератора. Проблема синхронизации при связи компьютеров может решаться разными способами, как с помощью обмена специальными тактовыми синхроимпульсами по отдельной линии, так и с помощью периодической синхронизации заранее обусловленными кодами или импульсами характерной формы, отличающейся от формы импульсов данных.
- Проблемы объединения нескольких компьютеров. Топология физических связей.
В первую очередь необходимо выбрать способ организации физических связей, то есть топологию. Под топологией вычислительной сети понимается конфигурация графа, вершинам которого соответствуют компьютеры сети (иногда и другое оборудование, например концентраторы), а ребрам - физические связи между ними. Компьютеры, подключенные к сети, часто называют станциями или узлами сети.
Заметим, что конфигурация физических связей определяется электрическими соединениями компьютеров между собой и может отличаться от конфигурации логических связей между узлами сети. Логические связи представляют собой маршруты передачи данных между узлами сети и образуются путем соответствующей настройки коммуникационного оборудования.
Выбор топологии электрических связей существенно влияет на многие характеристики сети. Например, наличие резервных связей повышает надежность сети и делает возможным балансирование загрузки отдельных каналов. Простота присоединения новых узлов, свойственная некоторым топологиям, делает сеть легко расширяемой. Экономические соображения часто приводят к выбору топологий, для которых характерна минимальная суммарная длина линий связи. Рассмотрим некоторые, наиболее часто встречающиеся топологии.