Три основных класса IP-адресов

IP-адрес имеет длину 4 байта и обычно записывается в виде четырех чисел, представляющих значения каждого байта в десятичной форме, и разделенных точками, например:

128.10.2.30 - традиционная десятичная форма представления адреса,

10000000 00001010 00000010 00011110 - двоичная форма представления этого же адреса.

На рисунке 3.1 показана структура IP-адреса.

Класс А

N сети N узла

Класс В

N сети N узла

Класс С

N сети N узла

Класс D

адрес группы multicast

Класс Е

зарезервирован

Рис. 3.1. Структура IР-адреса

Адрес состоит из двух логических частей - номера сети и номера узла в сети. Какая часть адреса относится к номеру сети, а какая к номеру узла, определяется значениями первых битов адреса:

· Если адрес начинается с 0, то сеть относят к классу А, и номер сети занимает один байт, остальные 3 байта интерпретируются как номер узла в сети. Сети класса А имеют номера в диапазоне от 1 до 126. (Номер 0 не используется, а номер 127 зарезервирован для специальных целей, о чем будет сказано ниже.) В сетях класса А количество узлов должно быть больше 216 , но не превышать 224.

· Если первые два бита адреса равны 10, то сеть относится к классу В и является сетью средних размеров с числом узлов 28 - 216. В сетях класса В под адрес сети и под адрес узла отводится по 16 битов, то есть по 2 байта.

· Если адрес начинается с последовательности 110, то это сеть класса С с числом узлов не больше 28. Под адрес сети отводится 24 бита, а под адрес узла - 8 битов.

· Если адрес начинается с последовательности 1110, то он является адресом класса D и обозначает особый, групповой адрес - multicast. Если в пакете в качестве адреса назначения указан адрес класса D, то такой пакет должны получить все узлы, которым присвоен данный адрес.

· Если адрес начинается с последовательности 11110, то это адрес класса Е, он зарезервирован для будущих применений.

В таблице приведены диапазоны номеров сетей, соответствующих каждому классу сетей.

Класс Наименьший адрес Наибольший адрес
A 01.0.0 126.0.0.0
B 128.0.0.0 191.255.0.0
C 192.0.1.0. 223.255.255.0
D 224.0.0.0 239.255.255.255
E 240.0.0.0 247.255.255.255

Соглашения о специальных адресах: broadcast, multicast, loopback

В протоколе IP существует несколько соглашений об особой интерпретации IP-адресов:

· если IР-адрес состоит только из двоичных нулей,

0 0 0 0 ................................... 0 0 0 0
                                                                                                                           

то он обозначает адрес того узла, который сгенерировал этот пакет;

· если в поле номера сети стоят 0,

0 0 0 0 .......0 Номер узла

то по умолчанию считается, что этот узел принадлежит той же самой сети, что и узел, который отправил пакет;

· если все двоичные разряды IP-адреса равны 1,

1 1 1 1 .........................................1 1
                                                                                                                           

то пакет с таким адресом назначения должен рассылаться всем узлам, находящимся в той же сети, что и источник этого пакета. Такая рассылка называется ограниченным широковещательным сообщением (limited broadcast);

· если в поле адреса назначения стоят сплошные 1,

Номер сети 1111................11

то пакет, имеющий такой адрес рассылается всем узлам сети с заданным номером. Такая рассылка называется широковещательным сообщением (broadcast);

· адрес 127.0.0.1 зарезервирован для организации обратной связи при тестировании работы программного обеспечения узла без реальной отправки пакета по сети. Этот адрес имеет название loopback.

Уже упоминавшаяся форма группового IP-адреса - multicast - означает, что данный пакет должен быть доставлен сразу нескольким узлам, которые образуют группу с номером, указанным в поле адреса. Узлы сами идентифицируют себя, то есть определяют, к какой из групп они относятся. Один и тот же узел может входить в несколько групп. Такие сообщения в отличие от широковещательных называются мультивещательными. Групповой адрес не делится на поля номера сети и узла и обрабатывается маршрутизатором особым образом.

В протоколе IP нет понятия широковещательности в том смысле, в котором оно используется в протоколах канального уровня локальных сетей, когда данные должны быть доставлены абсолютно всем узлам. Как ограниченный широковещательный IP-адрес, так и широковещательный IP-адрес имеют пределы распространения в интерсети - они ограничены либо сетью, к которой принадлежит узел - источник пакета, либо сетью, номер которой указан в адресе назначения. Поэтому деление сети с помощью маршрутизаторов на части локализует широковещательный шторм пределами одной из составляющих общую сеть частей просто потому, что нет способа адресовать пакет одновременно всем узлам всех сетей составной сети.

Назначение DNS-сервера;

DNS (англ. Domain Name System — система доменных имён) — распределённая система (распределённая база данных) , способная по запросу, содержащему доменное имя хоста (компьютера или другого сетевого устройства) , сообщить IP адрес или (в зависимости от запроса) другую информацию. DNS работает в сетях TCP/IP. Как частный случай, DNS может хранить и обрабатывать и обратные запросы, определения имени хоста по его IP адресу: IP адрес по определённому правилу преобразуется в доменное имя, и посылается запрос на информацию типа "PTR".

Как известно, каждый компьютер в сети Интернет имеет свой IP-адрес, не зная IP-адреса компьютера, невозможно отправить ему информацию или запрос. IP-адрес имеет вид 4-х байтового числа, разделенного точками (например, 162.234.12.112 или 78.31.54.220).

Для простого человека запомнить большое количество IP-адресов не легко, поэтому в начале развития сети Интернет возникла необходимость в средстве, которое должно было бы облегчить жизнь пользователям Интернета. Таким средством стала ДНС - система доменных имен.

ДНС - это средство, которое позволяет определить IP-адрес по доменному имени (резолвинг доменного имени) . Но даже многих серверов было бы мало для того, чтобы обработать огромное количество запросов, которое ежедневно генерируют все пользователи Интернета. Поэтому было создано иерархическую систему серверов. Каждая группа серверов в этой иерархии отвечает за определенную часть доменного имени. Например, в случае с доменным именем uahosting.com.ua сначала запрос идет к ДНС-серверу, который не знает ничего об этом домене (как правило, это ДНС-сервер вашего Интернет-провайдера) , но знает IP-адрес того сервера, который отвечает за зону ua. Потом запрос отсылается к этому ДНС-серверу, который отвечает за зону ua, но он может только ответить нам IP-адрес того сервера, который отвечает за зону com.ua, после запроса к нему мы получаем адрес того ДНС сервера, который отвечает за зону uahosting.com.ua, а уже от него мы можем узнать, какому адресу отвечает доменное имя uahosting.com.ua.

При заказе доменного имени Вам необходимо указывать адрес нейм-серверов, которые, в свою очередь, включены в общую иерархию ДНС-серверов и будут сохранять информацию о IP-адресу того сервера, на котором будут размещаться файлы Вашего сайта.
Адреса нэйм-серверов Вы можете узнать у Вашего хостинг-провайдера. Как правило, адреса нэйм-серверов начинаются буквами ns.

Виды используемых каналов для передачи данных в сети;

Для построения компьютерных сетей применяются линии связи, использующие различную физическую среду. В качестве физической среды в коммуникациях используются: металлы (в основном медь), сверхпрозрачное стекло (кварц) или пластик и эфир. Физическая среда передачи данных может представлять собой кабель "витая пара", коаксиальные кабель, волоконно-оптический кабель и окружающее пространство.

Линии связи или линии передачи данных - это промежуточная аппаратура и физическая среда, по которой передаются информационные сигналы (данные).

В одной линии связи можно образовать несколько каналов связи (виртуальных или логических каналов), например путем частотного или временного разделения каналов. Канал связи - это средство односторонней передачи данных. Если линия связи монопольно используется каналом связи, то в этом случае линию связи называют каналом связи.

Канал передачи данных - это средства двухстороннего обмена данными, которые включают в себя линии связи и аппаратуру передачи (приема) данных. Каналы передачи данных связывают между собой источники информации и приемники информации.

В зависимости от физической среды передачи данных линии связи можно разделить на:

 проводные линии связи без изолирующих и экранирующих оплеток;

 кабельные, где для передачи сигналов используются такие линии связи как кабели "витая пара", коаксиальные кабели или оптоволоконные кабели;

 беспроводные (радиоканалы наземной и спутниковой связи), использующие для передачи сигналов электромагнитные волны, которые распространяются по эфиру.

Назначение WEB сервера;

WEB-сервера - это сервера в сети Интернет, предоставляющие гипертекст, размеченный с помощью языка НТМL. Язык НТМL позволяет оформить текст в определенной цветовой гамме и нужными шрифтами, создать таблицы и списки, вставить в нужном месте графические, видеоизображения, звуковые файлы и ссылки (реализующие логические связи) на другие документы.

Программа для просмотра и получения документов с WEB-сервера называется браузером. Обычно браузер получает информацию с WEB-сервера по НТТР-протоколу. Скорость передачи информации, которую показывают многие браузеры - это средняя скорость получения информации с учетом всех задержек (число всех полученных байт, деленное на затраченное на их получение время).

Виды сетевых адресов, дайте их краткое описание;

Сетевой адрес — уникальный числовой идентификатор устройства, работающего в компьютерной сети.

В локальных сетях, не имеющих сложной иерархии, все партнёры доступны друг другу и достаточно сетевого адреса в виде одного числа (например, сеть PROFIBUS).

В сетях, связанных в глобальную сеть Internet, возникает проблема идентификации неопределённого и постоянно растущего числа участников. При этом используются два вида адресов:

§ MAC-адрес, состоящий из двух частей, первая определяет производителя оборудования, а вторая уникальный номер, присваиваемый производителем оборудованию, обеспечивает уникальный адрес любого устройства в сети.

§ IP-адрес, состоит из двух частей, первая — адрес подсети, вторая — адрес устройства в пределах подсети.

Альтернативой адресу являются идентификаторы устройств в форме символических имён, удобных для запоминания. Например, в пределах локальной сети — это сетевое имя компьютера, в глобальной сети — доменное имя. Специальные сетевые протоколы (DNS, WINS и т.п.) обеспечивают автоматическое определение соответствия между именами и адресами.


В IP-сетях так же существуют понятия "общий сетевой адрес" (broadcasting address) и "адрес сети". Например в сети определяемой как 192.168.0.0/24 IP-адрес сети будет 192.168.0.0, а "общий сетевой адрес" - 192.168.0.255. Первый используется для ссылок на саму себя, последний - для отправки пакетов на все доступные узлы сети. Поэтому выделяемый диапазон IP-адресов для узлов этой сети (например для сервера с DHCP) будет 192.168.0.1 - 192.168.0.254.

Понятие "сетевого идентификатора" так же важно для понимания. IP-адрес по версии IP4 хранится в 32-х битах. Запись 192.168.0.0/24 (CIDR) означает, что маска сети будет 255.255.255.0 - т.е. 24 бита являются "сетевым идентификатором", а остальные 8 выделяются под адрес конкретного узла (например, компьютера) этой сети. Т.о. в адресе конкретной машины 192.168.0.100, "сетевой идентификатор" равен "192.168.0", а адрес машины "100".

Назначение концентратора

Hub или концентратор - многопортовый повторитель сети с автосегментацией. Все порты концентратора равноправны. Получив сигнал от одной из подключенных к нему станций, концентратор транслирует его на все свои активные порты. При этом, если на каком-либо из портов обнаружена неисправность, то этот порт автоматически отключается (сегментируется), а после ее устранения снова делается активным. Обработка коллизий и текущий контроль за состоянием каналов связи обычно осуществляется самим концентратором. Концентраторы можно использовать как автономные устройства или соединять друг с другом, увеличивая тем самым размер сети и создавая более сложные топологии. Кроме того, возможно их соединение магистральным кабелем в шинную топологию. Автосегментация необходима для повышения надежности сети. Ведь Hub, заставляющий на практике применять звездообразную кабельную топологию, находится в рамках стандарта IEEE 802.3 и тем самым обязан обеспечивать соединение типа МОНОКАНАЛ.

Назначение концентраторов - объединение отдельных рабочих мест в рабочую группу в составе локальной сети. Для рабочей группы характерны следующие признаки: определенная территориальная сосредоточенность; коллектив пользователей рабочей группы решает сходные задачи, использует однотипное программное обеспечение и общие информационные базы; в пределах рабочей группы существуют общие требования по обеспечению безопасности и надежности, происходит одинаковое воздействие внешних источников возмущений (климатических, электромагнитных и т.п.); совместно используются высокопроизводительные периферийные устройства; обычно содержат свои локальные сервера, нередко территориально расположенные на территории рабочей группы.

Все концентраторы обладают следующими характерными эксплуатационными признаками:

· оснащены светодиодными индикаторами, указывающими состояние портов (Port Status), наличие коллизий (Collisions), активность канала передачи (Activity), наличие неисправности (Fault) и наличие питания (Power), что обеспечивает быстрый контроль состояния всего концентратора и диагностику неисправностей;

· при включении электропитания выполняют процедуру самотестирования, а в процессе работы - функцию самодиагностики;

· имеют стандартный размер по ширине - 19'';

· обеспечивают автосегментацию портов для изоляции неисправных портов и улучшения сохранности сети (network integrity);

· обнаруживают ошибку полярности при использовании кабеля на витой паре и автоматически переключают полярность для устранения ошибки монтажа;

· поддерживают конфигурации с применением нескольких концентраторов, соединенных друг с другом либо посредством специальных кабелей и stack-портов, либо тонкой коаксиальной магистрали, включенной между портами BNC, либо посредством оптоволоконного или толстого коаксиального кабеля подключенного через соответствующие трансиверы к порту AUI, либо посредством UTP кабелей, подключенных между портами концентраторов;

· поддерживают речевую связь и передачу данных через один и тот же кабельный жгут;

· прозрачны для программных средств сетевой операционной системы;

· могут быть смонтированы и введены в действие в течении нескольких минут.

Назначение коммутатора

Коммутатор (switch), в принципе, выполняет те же функции, что и мост, но для обслуживания потока данных, поступающего на каждый порт, в устройство устанавливается отдельный специализированный процессор, который реализует алгоритм моста. Коммутатор используется как средство сегментации — уменьшения количества узлов в доменах коллизий. В предельном случае — микросегментации — к каждому порту коммутатора подключается только один узел. При этом коммутатор должен направить в нужный порт каждый приходящий кадр, что предъявляет высокие требования к производительности процессора коммутатора.

Существуют два основных подхода к коммутации: с промежуточным сохранением кадров и коммутации «на лету».

Технология с промежуточным хранением (store and forward) предполагает, что каждый кадр, пришедший в порт, целиком принимается в буферную память. Далее процессор анализирует его заголовок, адрес источника использует для построения своих таблиц, а по адресу назначения определяет порт, в который кадр должен быть передан. В случае многоадресной или широковещательной передачи это будет группа из всех остальных портов. Передача в порт производится по мере его освобождения согласно процедуре CSMA/CD. После успешной передачи (во все требуемые порты) кадр из памяти удаляется, освобождая место. Эта технология позволяет анализировать кадр (проверять CRC-код) и игнорировать ошибочные кадры. Недостатком такого подхода является значительная задержка передачи кадров, по крайней мере, на время приема кадра (для максимально длинного кадра при 10 Мбит/с — 1,22 мс).

Коммутация «на лету» (on-the-fly) выполняется, по возможности, без промежуточного хранения кадра. Порт принимает кадр, одновременно анализируя его поле заголовка. Как только будут приняты биты адреса назначения — первые 6 байт после преамбулы, — коммутатор уже может пересылать кадр в порт или порты назначения, если они не заняты. В случае, если порт назначения занят, промежуточное хранение неизбежно. Коммутация «на лету» вносит минимальную задержку — при свободном порте назначения она составит (8 + 6) х 8 = 112 bt (битовых интервалов), для скорости 10 Мбит/с — 11,2 мкс. Однако проверка CRC не производится, и коммутатор распространяет все кадры, в том числе и короткие, отсеченные коллизиями (что является недостатком коммутации «на лету»).

1. Три основных класса IP-адресов - student2.ru

2. Рис. 4.16. Логическая структуризация сети

Назначение маршрутизатора;

Зачем нужен маршрутизатор?

Обычно для создания простой локальной сети (компьютерной сети) построенной на технологии Ethernet или Wi-Fi используется сетевое устройство (маршрутизатор, модем, коммутатор, точка беспроводного доступа...). Но из всего этого многообразия сетевых устройств нас интересует маршрутизатор. Так зачем нужен маршрутизатор и какую роль он выполняет в локальной сети?

Маршрутизатор (router) - это сетевой компьютер связывающий участки локальной сети, который обрабатывает полученные данные по заданным правилам администратора и опираясь на таблицу маршрутизации определяет путь для пересылки данных.

Чтобы было более понятно, давайте разберем участие маршрутизатора в домашней локальной сети. Предположим, что у вас дома есть настольный компьютер (desktop), ноутбук (laptop), принтер или МФУ (Многофункциональное устройство), планшет и в добавок вы хотите купить телевизор Smart с 3D. К вам в квартиру заходит всего лишь одинкабель LAN по которому провайдер предоставляет вам доступ к сети интернет. Возникает вопрос: "Как одновременно всем устройствам дать выход в сеть интернет, если кабель от провайдера в квартире один?".

Три основных класса IP-адресов - student2.ru

Вот тут-то и приходит на помощь беспроводной маршрутизатор, который можно подключить к кабелю провайдера (верхнее изображение) и дать всем устройствам (Smart TV, компьютер, планшет...) выход в сеть интернет. Если провайдер использует телефонные линии, то подключение маршрутизатора к сети интернет выполняется через модем (нижнее изображение). Связь домашних устройств с беспроводным маршрутизатором осуществляется по кабелю LAN (опрессовка витой пары без инструмента) и по беспроводной сети Wi-Fi (примеры слабого сигнала Wi-Fi).

Наши рекомендации