Принцип двоичного кодирования. Согласно этому принципу, вся информация, поступающая в ЭВМ, кодируется с помощью двоичных сигналов
Принцип программного управления. Из него следует, что программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности.
Принцип однородности памяти. Программы и данные хранятся в одной и той же памяти. Поэтому ЭВМ не различает, что хранится в данной ячейке памяти - число, текст или команда. Над командами можно выполнять такие же действия, как и над данными.
Принцип адресности. Структурно основная память состоит из пронумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка. Отсюда следует возможность давать имена областям памяти, так, чтобы к запомненным в них значениям можно было бы впоследствии обращаться или менять их в процессе выполнения программы с использованием присвоенных имен.
Фон Нейман не только выдвинул основополагающие принципы логического устройства ЭВМ, но и предложил ее структуру, которая воспроизводилась в течение первых двух поколений ЭВМ. Основными блоками по Нейману являются устройство управления (УУ) и арифметико-логическое устройство (АЛУ) (обычно объединяемые в центральный процессор), память, внешняя память, устройства ввода и вывода. Схема устройства такой ЭВМ представлена на рис. 4.13. Сплошные линии со стрелками указывают направление потоков информации, пунктирные - управляющих сигналов от процессора к остальными узлам ЭВМ.
Следует отметить, что внешняя память отличается от устройств ввода и вывода тем, что данные в нее заносятся в виде, удобном компьютеру, но недоступном для непосредственного восприятия человеком. Так, накопитель на магнитных дисках относится к внешней памяти, а клавиатура - устройство ввода, дисплей и печать - устройства вывода.
Устройство управления и арифметико-логическое устройство в современных компьютерах объединены в один блок - процессор, являющийся преобразователем информации, поступающей из памяти и внешних устройств (сюда относятся выборка команд из памяти, кодирование и декодирование, выполнение различных, в том числе и арифметических операций, согласование работы узлов компьютера). Более детально функции процессора будут обсуждаться ниже.
Рис. 4.13. Архитектура ЭВМ, построенной на принципах фон Неймана.
Память (ЗУ) хранит информацию (данные) и программы. Запоминающее устройство у современных компьютеров «многоярусно» и включает оперативное запоминающее устройство (ОЗУ), хранящее ту информацию, с которой компьютер работает непосредственно в данное время (исполняемая программа, часть необходимых для нее данных, некоторые управляющие программы), и внешние запоминающие устройства (ВЗУ) гораздо большей емкости, чем ОЗУ, но с существенно более медленным доступом (и значительно меньшей стоимостью в расчете на 1 байт хранимой информации). На ОЗУ и ВЗУ классификация устройств памяти не заканчивается - определенные функции выполняют и СОЗУ (сверхоперативное запоминающее устройство) и ПЗУ (постоянное запоминающее устройство), и другие подвиды компьютерной памяти.
В построенной по описанной схеме ЭВМ происходит последовательное считывание команд из памяти и их выполнение. Номер (адрес) очередной ячейки памяти, из которой будет извлечена следующая команда программы, указывается специальным устройством - счетчиком команд в УУ. Его наличие также является одним из характерных признаков рассматриваемой архитектуры.
Разработанные фон Нейманом основы архитектуры вычислительных устройств оказались настолько фундаментальными, что получили в литературе название «фон-неймановской архитектуры». Подавляющее большинство вычислительных машин на сегодняшний день - фон-неймановские машины. Исключение составляют лишь отдельные разновидности систем для параллельных вычислений, в которых отсутствует счетчик команд, не реализована классическая концепция переменной и имеются другие существенные принципиальные отличия от классической модели (примерами могут служить потоковая и редукционная вычислительные машины).
По-видимому, значительное отклонение от фон-неймановской архитектуры произойдет в результате развития идеи машин пятого поколения, в основе обработки информации в которых лежат не вычисления, а логические выводы.
Структура современного персонального компьютера представлена на рис. 4.14. Достижения микроэлектроники позволили объединить в одной интегральной схеме, называемой микропроцессором (МП) или процессором, АЛУ и УУ. Уменьшение габаритов ОЗУ позволило разместить МП и ОЗУ на одной электронной плате, называемой системнойили материнской.Все связи между отдельными устройствами объединены в пучок параллельных проводов — локальную или системную шину. В состав этой шины входят шина данных, по которой передаются из ОЗУ в МП также и команды, шина адреса и шина синхронизации (управления).
Рис. 4.14. Структурная схема персонального компьютера
Устройства ввода-вывода (УВВ) разделены на собственно УВВ и управляющие ими контроллеры (карты), включаемые в системную плату или установленные прямо на ней.
К устройствам ввода информации относятся клавиатура, ручные манипуляторы, мышь, трекбол, джойстик, трекпойн, джойстринг, диджитайзер, трекпад, сканер, световое перо, информационные перчатки, костюм, шлем, цифровая видеокамера, микрофон и т.д.
К устройствам вывода информации относятся дисплей, принтер, плоттер, акустические колонки и др.
Новым в структуре современного компьютера и принципе его действия являются сигналы и понятие прерываний (рис. 4.14). Прерывания появились в связи с переходом от математических вычислений, которые не зависят от внешних условий, к обработке информации в реальном масштабе времени.
Компьютер должен реагировать на изменение внешних условий, иногда немедленно, запоминая эти события или даже меняя алгоритм обработки. Допустим, если в микропроцессор извне поступает сигнал запроса на прерывание, которое обрабатывается всегда, выполнение текущей программы приостанавливается, в заранее определенной области ОЗУ сохраняются все промежуточные результаты и адрес остановки в программе, и микропроцессор выполняет специальную программу обработки прерывания, в которой указано, что надо сделать в этом случае. После ее завершения восстанавливаются все промежуточные результаты, и микропроцессор продолжает выполнение текущей программы с запомненного ранее адреса.
В современных компьютерах возможна параллельная работа нескольких процессоров. За счет распараллеливания выполнения одной задачи или параллельного выполнения многих задач достигается увеличение общей производительности компьютера. Для этого предусматривают цепи, связывающие между собой отдельные процессоры.
Основу центрального процессора ПЭВМ составляет микропроцессор – обрабатывающее устройство, служащее для арифметических и логических преобразований данных, для организации обращения ОП и ВнУ и для управления ходом вычислительного процессора.
Наиболее существенными, классификационными различиями между МП чаще всего выступают:
- назначение (микропроцессоры для серверов и мощных приложений; МП для персональных компьютеров и т.д.);
- количество разрядов в обрабатываемой информационной единице (8-битовые, 16-битовые, 32-битовые, 64-битовые);
- технология изготовления (0,5 мкм; 0,35 мкм; 0,25 мкм; 0,18 мкм; 0,13 мкм; 0,07 мкм); МКМ – это микронная технология (каждый транзистор размещается на кристалле внутри квадрата с указанным размером стороны).
Микропроцессор (центральный микропроцессор, CPU) — программно управляемое устройство, предназначенное для обработки информации по алгоритму, задаваемому программой, находящейся в данный момент в оперативной памяти. Конструктивно представляет собой небольшую микросхему внутри системного блока, установленную на материнской плате.
Процессоры классифицируются по базовому типу, называемого семейством (Intel, AMD, Cyrix, Motorola). С целью преемственности программного обеспечения последующие модели и модификации процессоров, как правило, содержат всю систему команд своих предшественников. Основными характеристиками процессора являются:
• быстродействие — количество операций, производимых в 1 секунду, измеряется в бит/с. Каждая последующая модель имеет более высокую производительность по сравнению с предыдущей. Маркировка современных процессоров имеет расширение ММХ (MultiMedia eXtention — расширение мультимедиа);
• тактовая частота — количество тактов, производимых процессором за 1 секунду. Операции, производимые процессором, не являются непрерывными, они разделены на такты. Эта характеристика определяет скорость выполнения операций и непосредственно влияет на производительность процессора;
• разрядность — количество двоичных разрядов, которые процессор обрабатывает за один такт. Так, указывая разрядность 64, имеют в виду, что процессор имеет 64-разрядную шину данных, т. е. за один такт он обрабатывает 64 бита.