Представление о системах счисления

Числа могут быть представлены в различных системах счисления.

Система счисления– совокупность приемов и правил записи чисел с помощью набора определенных символов.

Для записи чисел могут использоваться не только цифры, но и буквы (например, запись римских цифр - XXI, MCMXCIX). В зависимости от способа изображения чисел системы счисления делятся на позиционные и непозиционные.

В позиционной системе счисления количественное значение каждой цифры числа зависит от того, в каком месте (позиции или разряде) записана та или иная цифра этого числа. Позиции числа нумеруют от 0 справа налево. Например, меняя позицию цифры 2 в десятичной системе счисления, можно записать разные по величине десятичные числа, например, 2 (цифра 2 стоит на 0-й позиции и означает две единицы); 20 (цифра 2 стоит на 1-й позиции и означает два десятка); 2000 (цифра 2 стоит на 3-й позиции и означает две тысячи); 0,02 и т.д. Перемещение положения цифры в соседний разряд увеличивает (уменьшает) ее значение в 10 раз.

В непозиционной системе счисления цифры не изменяют своего количественного значения при изменении их расположения (позиции) в числе. Примером непозиционной системы может служить римская система, в которой независимо от местоположения, одинаковый символ имеет неизменное значение (например, символ X в числе XVX означает десять, где бы он ни стоял).

Количество (p) различных символов, используемых для изображения числа в позиционной системе счисления, называется основанием системы счисления. Значения цифр лежат в пределах от 0 до p-1.

В десятичной системе счисления p=10 и для записи любого числа используется 10 цифр: 0, 1, 2, ... 9.

Для компьютера наиболее подходящей и надежной оказалась двоичная система счисления (p=2), в которой для представления чисел используются последовательности цифр - 0 и 1. Кроме того, для работы компьютера оказалось удобным использовать представление информации с помощью еще двух систем счисления:

· восьмеричной (p=8, т.е. любое число представляется с помощью 8 цифр - 0,1, 2,...7);

· шестнадцатеричной (p=16, используемые символы - цифры - 0, 1, 2, ..., 9 и буквы - A, B, C, D, E, F, заменяющие числа 10,11, 12, 13, 14, 15 соответственно).

Соответствие кодов десятичной, двоичной и шестнадцатеричной систем счисления представлено в таблице 2.

Таблица 2. Соответствие кодов десятичной, двоичной и шестнадцатеричной систем счисления

Десятичная Двоичная Шестнадцатеричная
A
B
C
D
E
F

В общем случае любое число N в позиционной системе счисления можно представить в виде:

Представление о системах счисления - student2.ru (1) ,

где k - количество разрядов в целой частности числа N;

Представление о системах счисления - student2.ru - (k –1)-ая цифра целой части числа N, записанного в системе счисления с основанием p;

Представление о системах счисления - student2.ru - n-ая цифра дробной части числа N, записанного в системе счисления с основанием p;

n - количество разрядов в дробной части числа N;

Максимальное число, которое может быть представлено в к разрядах Представление о системах счисления - student2.ru .

Минимальное число, которое может быть представлено в n разрядах Представление о системах счисления - student2.ru .

Имея в целой части числа к разрядов, а в дробной n разрядов, можно записать всего Представление о системах счисления - student2.ru разных чисел.

С учетом этих обозначений запись числа N в любой позиционной системе счисления с основанием p имеет вид:

Представление о системах счисления - student2.ru

Пример 8

При p = 10 запись числа в десятичной системе счисления – 2466,675 10 , где k = 4, n = 3.

При p = 2 запись числа в двоичной системе – 1011,112 , где k = 4, n = 2.

Двоичная и шестнадцатеричная системы счисления обладают такими же свойствами, что и десятичная, только для представления чисел используется не 10 цифр, а всего две в первом случае и 10 цифр и 6 букв во втором случае. Соответственно и разряд числа называют не десятичным, а двоичным или шестнадцатеричным. Основные законы выполнения арифметических действий в двоичной и шестнадцатеричной системах счисления соблюдаются точно также как и в десятичной.

Для сравнения рассмотрим представление чисел в разных системах счисления, как сумму слагаемых, в которых учтен вес каждого разряда.

Пример 9

В десятичной системе счисления

Представление о системах счисления - student2.ru

В двоичной системе счисления

Представление о системах счисления - student2.ru

В шестнадцатеричной системе счисления

Представление о системах счисления - student2.ru

Существуют правила перевода чисел из одной системы счисления в другую.

Наши рекомендации