Q2) Значение геологических знаний
Q1) Содержание науки Геология
Геология, как наука, появилась практически сразу после появления человека, и входила в философию. Сам термин геология появился около 200 лет назад.
Геология – это наука о строении Земли, ее составе и развитии, процессами, протекающими в недрах и на поверхности, о формировании и размещении на Земле месторождений полезных ископаемых.
Q2) Значение геологических знаний
Современная геология служит теоретической основой для поисков/разведки/разработки всех видов полезных ископаемых, в практическая геология создает сырьевую базу промышленной индустрии.
Q3) Подразделения науки геология
Геология представляет собой комплекс знаний, в составе которых выделяются следующий науки:
1) Кристаллография – изучает кристаллы
2) Минералогия – изучает минералы
3) Геммология – изучает драгоценные камни
4) Литология – изучает горные породы (осадочные)
5) Петрография – изучает горные породы (магматические)
6) Тектоника – изучает движение земной коры
7) Гидрогеология – изучает воду как ископаемое
8) Стратиграфия – изучает особенности чередования пластов пород в земной коре
9) Палеонтология – изучает остатки живых организмов прошлого для геологических целей.
10) Геология нефти и газа – изучает геологические особенности м/р нефти и газа (их образования и залегания)
11) Геология полезных ископаемых – изучает полезные ископаемые
12) Петрофизика – изучает физические свойства горных пород и минералов
13) Геофизика – изучает физические свойства комплексов пород и минералов в земной коре
Q4) Прямые методы изучения геологических объектов
1) Физические
2) Химические
3) Оптические
и др. методы исследования каменных материалов. При этом выясняют состав, строение, особенности образования и существования этих материалов. Изучаются физические и химические свойства пород и минералов.
Q5) Косвенные методы изучения геологических объектов
Косвенные методы основаны на дистанционном изучении некоторых свойств пород, минералов, полезных ископаемых, залегающих в недрах Земли.
1) Магниторазведка
2) Гравиразведка
3) Сейсморазведка
4) Электроразведка
Q6) Понятие о гравиразведке
Гравиразведка – метод, основанный на изучении силы тяжести на поверхности Земли, или близь поверхности Земли (единица измерения – 1 Гал = 1 м/c2).
Как известно, в среднем на планете g=9,8 м/c2. В каждой точке поверхности Земли g имеет своё значение, отличающееся от среднего в 5ом, 6ом, 7ом знаке после запятой. Оно (g) определяется плотностью пород, залегающих в недрах ниже точки наблюдений.
В рамках проведения методов гравиразведки на участках съемки располагают систему гравиметров. Они измеряют значение g. На основе данных вычислений можно построить гравиметрическую карту, на которой могут выделиться положительные и отрицательные аномалии.
Q7) Понятие о магниторазведке
Магниторазведка – метод, основанный на сравнительном дистанционном изучении магнитных свойств веществ Земли. Многие породы и минералы содержат в себе части Fe, и, как следствие, обладают магнитными свойствами. Эти свойства замеряются и устанавливается на поверхности магнетометрами. По результатам замеров составляют магнитометрическую карту, на которой могут выделиться положительные или отрицательные аномалии.
Положительные аномалии могут быть вызваны залегающими в недрах железосодержащими породами.
Q8) Понятие о сейсморазведке
Сейсморазведка – метод, основанный на изучении распространения сейсмических волн в толще Земли. Эти волны вызываются искусственным взрывом и с разной скоростью проходят через разного состава породы. На границах разделов между массивами горных пород они частично преломляются, частично отражаются и возвращаются к поверхности. Здесь их улавливает система сейсмографов. Полученные данные интерпретируются. В результате можно с высокой вероятностью определить состав залегающих под участком съемки пород (состав определяется скоростью прохождения сейсмоволн) и структуру земной коры.
Q11) Геосферы Земли
Геосферы (от греч. гео — «Земля», сфера — «шар») — географические концентрические оболочки (сплошные или прерывистые), из которых состоит планета Земля.
Выделяются следующие геосферы: атмосфера, гидросфера, литосфера, земная кора, мантия и ядро Земли. Ядро Земли делится на внешнее ядро (жидкое) и центральное — субъядро (твёрдое)
Верхняя оболочка Земли – земная кора, имеет мощность от 5-80 км.
Нижняя граница земной коры и верхняя граница мантии получила название «поверхность Махоровичича».
Земная кора + поверхность Махоровичича + верхняя часть мантии образуют литосферу. Её мощность под континентами составляет примерно 150 км, а под океаном около 90 км.
Сейчас считается, что ядро состоит из Ni и Fe, и верхняя часть ядра находится в расплавленном состоянии, а внутренний слой (около 1250 км.) – твердое железное ядро. Плотность ядра составляет 10 000 кг/м3 (1,7 % массы Земли). Граница между Внешней и внутренней части ядра проходит толщиной около 5 км на расстоянии примерно 1220 км от центра.
Мантия – первичная земная материя, включает в себя свойства жидкости и твердого вещества. Располагается между земной корой и ядром. В мантии протекает процесс дифференциации, когда тяжелые элементы стремятся опуститься в ядро, а легкие (O2, C и т.д) поднимаются в земную кору.
Верхняя мантия протягивается на глубину до 400 км. В пределах этого слоя, в интервале глубин от 100-120 до 350-400 км под континентами и на глубине от 50-60 до 400 км под океанами, скорость продольных сейсмических волн не возрастает, а скорость поперечных волн - даже падает. Это может указывать на уменьшение вязкости вещества, и, возможно, на его частично расплавленное состояние. Эта зона внутри верхней мантии получила название астеносфера («ослабленная сфера»), в отличие от верхней твердой литосферы. В астеносферном слое располагаются первичные очаги вулканизма и проявляются процессы, приводящие к тектоническим движениям в земной коре.
Средняя мантия охватывает глубины Земли от 400 до 900 км. В этом слое скорости прохождения сейсмических волн резко возрастают (с 8,5 км/с до 11,2 км/с), что указывает на значительное увеличение плотности и вязкости вещества. Этот слой назван слоем Голицына.
Нижняя мантия располагается на глубинах от 670 до 2900 км; здесь скорости сейсмических волн с глубиной возрастают медленно, но тем не менее достигают здесь максимальных для нашей планеты значений: продольная скорость увеличивается до 13,6 км/с, а поперечная - до 7,3 км/с. Полагают, что относительно равномерное нарастание скорости с глубиной связано только с ростом давления и свидетельствует об относительно однородном строении нижней мантии. В низах этого слоя, на глубине 2700-2900 км выделяется переходная оболочка (поверхность Вихерта-Гутенбрега), отличающаяся по свойствам от всей остальной нижней мантии. Здесь отмечается некоторое снижение скорости продольных волн, что, вероятно, связано с переходом к внешнему ядру.
Атмосфера (от. греч. атмос — «пар» и сфера — «шар») — газовая оболочка небесного тела, удерживаемая около него гравитацией.
Гидросфера (от. греч. гидро – «вода» и сфера – «шар») - водная оболочка Земли, совокупность всех её водных запасов.
Q13) Типы земной коры
Земная кора – наиболее важная и мобильная часть Земли. Всего выделяют два типа земной коры – континентальную и океаническую – различную по мощности и составу. А так же выделяют промежуточный тип, в котором происходит переход от одного вида земной коры к другому с появлением гранитного слоя. Максимальная мощность Земли – до 80 км. – образуется под горами. Эти места называются корнями гор.
Q15) Тепловое поле Земли
Тепловое поле Земли на поверхности определяется излучением солнца. Именно энергия солнца питает все поверхностные геологические процессы. Влияние солнечной энергии распространяется до глубины нескольких сотен метров. Ниже основную роль начинают играть глубинные факторы, и t° начинает закономерно повышаться. Скорость этого повышения зависит от 2х факторов:
1) Геотермический градиент, т.е. прирост t° с погружением на 100 метров. В среднем на планете он равен около 3х градусов. Но весьма различается в разных районах. Например, в Мск ~ 1 °С, а на Камчатке ~ 32,5 °С.
2) Геотермическая ступень – это глубина, на которую надо погрузиться, чтобы t° выросла на 1°С. В среднем на Земле ступень = 33 метрам. В Мск ~ 100 м. На камчатке ~ 3м.
Эти параметры довольно постоянны до глубины 4-5 км., а глубже значение геотермического градиента (эффекта) падает, а ступени – растет. В ядре t° = 5000-6000 °C
Источники внутреннего тепла таковы:
1) Гравитационная дифференциация веществ мантии, в результате которой легкие элементы всплывают к коре, а тяжелые элементы опускаются к земному ядру.
2) Боковое движение вещества в мантии
3) Распад радиоактивных элементов в составе земной коры и мантии, которое идет с выделением тепла в виде γ излучения
Q18) Время в геологии
Геохронология – наука, занимающаяся разделением геологического времени на условные отрезки, имеющие собственные названия и расположенные в определенной последовательности.
Земля имеет возраст примерно 4,5 млрд. лет. Геохронологическая таблица делит это время на: эры, периоды, эпохи и века с определенной продолжительностью. Для определения возраста в геологии используются абсолютные и относительные методы.
Q19) Методы определения относительного возраста
Относительные методы определения возраста геологических объектов основаны на сравнении залегания пород, и не позволяет определить возраст этих пород в годах.
1) Стратиграфический (strata – лат. – слой, пласт)
Метод основан на положении, согласно которому более древние породы залегают под молодыми. Метод может привести к ошибкам, т.к. в ряде случаев геологические процессы могут поставить на ребра или перевернуть почки пластов. Так молодые породы окажутся в глубине.
2) Петрографический
Метод основан на сравнительном изучении состава и ширины пород в разрезах. Считается, что в одинаковые породы в разных разрезах имеют один возраст.
3) Палеонтологический
Метод основан на изучении остатков животных и растительных организмов, которые существовали в прошлом. Применим лишь для осадочных горных пород. Как известно, жизнь на Земле зародилась млрд. лет назад и с тех пор постоянно изменялась и совершенствовалась. Главные принцип палеонтологического метода заключается в том, что породы в разных разрезах, содержащие одни и те же органические остатки имеют один возраст.
Q20) Метода определения абсолютного возраста
Геологические методы определения абсолютного возраста минералов и пород основаны на использовании процессов радиоактивного распада некоторых элементов. Как известно, многие химические элементы имеют по несколько радиоактивных элементов. Они не стабильны и распад происходит с выделением α и β частиц и γ излучения.
Природа распада у каждого элемента строго фиксирована, и могут измеряться миллиардами лет. При определении возраста берут образец минерала, содержащего радиоактивный изотоп и продукты его распада, и определяют количество обоих. Подставив полученное значение в формулу, получим T (период полураспада) минерала в годах.
Методы абсолютной геохронологии применимы для пород и минералов эндогенного происхождения. Сейчас используются и развиваются следующие методы:
· Калиорионовый (превращает радиоактивный калий в стабильный арион)
· Уран-свинцовый (превращает радиоактивный U235 в стабильный свинец Pb207)
· Рубидий-стронцевый (превращает радиоактивный рубидий в стабильный стронций)
· Радио-углеродный (превращает нестабильный углерод в стабильный азот)
Q29) Типы ледников
В геологии выделяют 4 типа ледников:
1) Горные (альпийские) ледники – сравнительно не большие, характерны для горных областей всех широт.
2) Покровные – характерна низкая снеговая линия, S покрытия измеряется 1,000,000 км2, мощность оледенения до 4,6 км. в Антарктиде. Выделяют гринландский и атлантический тип ледников.
3) Шельфовые – занимают на дне некоторых шельфовых зон и вдоль прибрежных островов Гренландии и Антарктиды. Особенно характерны для шельфа западной Антарктиды.
4) Промежуточного (скандинавского) типа – образуются на плоских вершинах континентальных гор.
Q31) Эпохи оледенения
В геологической истории Земли неоднократно возникали условия для гораздо более мирового развития ледников, чем это необходимо сейчас. Такие периоды носят название эпохи оледенения. Во время этих эпох среднегодовая температура в отдельных районах планеты или на всех планете сильно понижалась, и там образовывались ледники. Сначала они формировались в самых холодных участках, затем распространились по всему району. В европейской части России выделяют 3 эпохи оледенения, которые носят названия:
1) Лохвинская
2) Днепревская
3) Валдайская – окончилась около 10 тыс. лет назад.
Во времена этих эпох на скандинавском полуострове образовался покровный ледник, языки которого текли на юг и доходили до широт Киева. Они несли с собой морену состоящую из обломков Скандинавских пород.
Когда ледник начал таять, мореные отложения накапливались на земной поверхности. Их можно было встретить по всей местности на Русской равнине. Эпохи оледенения характерны и для далекого прошлого. Мореные отложения можно встретить в пластах с возрастом более 100 млн. лет
Причины обледенения окончательно не выяснены. Предположительно это:
1) Периодические похолодания могли быть связаны с прохождением Земли через облака космической пыли
2) Похолодание объясняют уменьшением солнечной радиации
3) Похолодание могло быть связанно с особыми действиями атмосферы, гидросферы, вулканизма.
Q33) Этапы жизни реки
В жизни реки выделяют три этапа периода: юности, зрелости и старости.
В период юности река течет по неровностям рельефа. Скорость воды на разных участках различается и довольно высока, встречаются пороги. Река быстро размывает породы ложа, образуются глыбы, галька, крупный песок. Дальше и эти обломки окатываются.
В юности преобладает донная эрозия – реки размывают свое ложе. Постепенно профиль реки выравнивается, скорость воды снижается на ряду с донной эрозией появляется, а затем начинает преобладать, боковая эрозия, т.е. размыв берегов. Река переходит в стадию зрелости, а за тем в стадию старости. В этой последней стадии река начинает вилять, заполняя своими наносами свою же долину. Скорость реки снижается. Коэффициент извилистости K увеличивается. K – отношение длины реки к расстоянию от истока до устья по прямой. K = b/a. Появляются меандры, старицы, террасы.
Q38) Этапы литогенеза
В процессе формирования и жизни осадочных пород, т.е. в процессе литогенеза, выделяют 5 стадий:
1) Образование осадочного материала при разрушении уже существующих минералов и пород экзогенными факторами.
2) Перенос теме же факторами получившегося материала в виде обломков, взвесей, растворов.
3) Отложение этого материала в благоприятных для этого участках рельефа с образованием рыхлой, не редко насыщенной водой, породы. Этот этап называется седиментогенез (осадконакопление).
4) Диагенез – превращение рыхлого осадка в твердую породу. Во время диагенеза давление вышележащих осадков приводит к выдавливанию воды. Некоторые химические соединения в составе осадков вступают в реакции друг с другом так, что в породе достигается физико-химическое равновесие. Например, в процессе диагенеза песок превращается в песчаник, ил – в аргелит и т.д.
5) Катагенез. Его причины – изменение условий в окружающей породу среде. В соответствии с меняющимися условиями происходит дальнейшее уплотнение, перекристаллизация, образование породы, растворение одних веществ и появление других компонентов.
Q39) Образование осадочного материала
Осадочные горные породы — горные породы, существующие в термодинамических условиях, характерных для поверхностной части земной коры и образующиеся в результате переотложения продуктов выветривания и разрушения различных горных пород, химического и механического выпадения осадка из воды, жизнедеятельности организмов или всех трех процессов одновременно. Более трёх четвертей площади материков покрыто осадочными породами, поэтому с ними наиболее часто приходится иметь дело при геологических работах. Кроме того, с осадочными породами связана подавляющая часть разрабатываемых месторождений полезных ископаемых. В них хорошо сохранились остатки вымерших организмов, по которым можно проследить историю развития различных уголков Земли. Изучением осадочных горных пород занимается наука литология.
Q40) Седиментогенез
Седиментогенез - стадия переноса и осаждения вещества, широко распространённые природные процессы, приводящие к образованию осадков на дне различных водоёмов и во впадинах на суше. Понятие седиментогенеза. как начальной стадии литогенеза, введено советским геологом Н. М. Страховым (1953). Последний различает в ней три этапа: мобилизация исходного для осадков вещества в коре выветривания, перенос вещества и осадкообразование на водосборных площадях, осадкообразование в конечных водоёмах стока. Седиментогенез сменяется диагенезом (превращением осадков в породы).
Q41) Диагенез
Осадок, накопившийся на дне водоема или на поверхности суши, обычно представляет собой неравновесную систему, состоящую из твердой, жидкой и газовой фаз. Между составными частями осадка начинается физико-химическое взаимодействие. Активное участие в преобразовании осадков принимают обитающие в иле организмы.
Во время диагенеза происходит уплотнение осадка под тяжестью образующихся выше него слоев, обезвоживание, перекристаллизация. Взаимодействие составных частей осадка между собой и окружающей средой приводит к растворению и удалению неустойчивых компонентов осадка и формированию устойчивых минеральных новообразований. Разложение отмерших животных организмов и растений вызывает изменение окислительно-восстановительных и щелочно-кислотных свойств осадка. К концу диагенеза жизнедеятельность бактерий и других организмов почти полностью прекращается, а система осадок — среда приходит в равновесие.
Продолжительность стадии диагенеза изменяется в широких пределах, достигая десятков и даже сотен тысяч лет. Мощность зоны осадка, в которой протекают диагенетические преобразования, также колеблется в значительном диапазоне и, по оценке большинства исследователей, составляет 10— 50 м, а в ряде случаев, по-видимому, может быть и больше.
Q42) Катагенез
В эту стадию осадочные породы претерпевают существенные преобразования, сопровождаемые изменением химико-минералогического состава, строения и физических свойств. Основными факторами преобразования пород являются температура, давление, вода, растворенные в ней соли и газообразные компоненты, рН и радиоактивное излучение. Направленность и интенсивность преобразований в значительной степени определяются составом и физическими свойствами пород. В процессе катагенеза происходит уплотнение пород, их обезвоживание, растворение неустойчивых соединений, а также перекристаллизация и образование новых минералов. Впервые термин Катагенез, обозначающий совокупность преобразований горной породы после перекрытия ее слоями нового осадка, был предложен А. Е. Ферсманом в 1922 году.
Знание закономерностей катагенеза имеет большое практическое значение, например для оценки перспектив нефтеносности осадочных толщ, для прогнозирования свойств (марок) углей ископаемых, стройматериалов и т.д.
Q43) Понятие о магматизме
Магматические горные породы образуются при застывании и кристаллизации магмы. Магма – это природный силикатный расплав сложного химического состава. В магме содержится практически вся периодическая таблица Менделеева: Al, Si, Mg, пары H2O, газообразные компоненты.
В зависимости от условий, в которых происходило застывание магмы, магматические горные породы делятся на интрузивные (образованы на большой глубине, при высоких t° и p) и эффузивные (застывание на поверхности Земли).
В интрузивных горных породах присутствие летучих компонентов способствует процессу кристаллизации, и образуют породы с полной кристаллической структурой. В эффузивных породах в условиях быстрого охлаждения, которое сопровождается выделением летучих компонентов, происходит неполная кристаллизация магмы. Образуется скрытокристаллическое строение магматической горной породы.
Понятие о магме и лаве
Магма (греч. — месиво, густая мазь) представляет собой природный, чаще всего силикатный, огненно-жидкий расплав, возникающий в земной коре или в верхней мантии, на больших глубинах, и при остывании формирующий магматические горные породы. Излившаяся магма — это лава.
Ла́ва — раскаленная жидкая (эффузия) или очень вязкая (экструзия), преимущественно силикатного состава масса (SiO2 примерно от 40 до 95%) , изливающаяся на поверхность Земли при извержениях вулканов. При застывании лавы образуются эффузивные (излившиеся) горные породы.
В некоторых районах земного шара магма во время вулканических извержений изливается на земную поверхность в виде лавы. Многие вулканические островные дуги связаны с системой глубинных разломов. Центры землетрясений располагаются примерно на глубине до 700 км от уровня земной поверхности, то есть вулканический материал поступает из верхней мантии. На островных дугах он часто имеет андезитовый состав, а поскольку андезиты по своему составу сходны с континентальной земной корой, многие геологи считают, что континентальная кора в этих районах наращивается за счет поступления мантийного вещества.
Вулканы, действующие вдоль океанических хребтов (например, Гавайского), извергают материал преимущественно базальтового состава. Эти вулканы, вероятно, сопряжены с мелкофокусными землетрясениями, глубина которых не превышает 70 км. Поскольку базальтовые лавы встречаются как на материках, так и вдоль океанических хребтов, геологи предполагают, что непосредственно под земной корой существует слой, из которого поступают базальтовые лавы.
Однако неясно, почему в одних районах из мантийного вещества образуются и андезиты, и базальты, а в других – только базальты. Если, как теперь полагают, мантия действительно является ультраосновной породой (обогащена железом и магнием), то лавы, произошедшие из мантии, должны иметь базальтовый, а не андезитовый состав, поскольку минералы андезитов отсутствуют в ультраосновных породах. Это противоречие разрешает теория тектоники плит, согласно которой океаническая кора подвигается под островные дуги и на определенной глубине плавится. Эти расплавленные породы и изливаются в виде андезитовых лав.
Q46) Понятие метаморфизма
В процессе развития земной коры осадочные горные породы и магматические горные породы могут попадать после своего образования с специальные термодинамические условия, которые характеризуются высокими t° и p.
10 км глубина = 300°C = 2700 атм., 20 км = 600°C = 5400 атм.
В таких условиях горные породы начинают менять свои физические, а, иногда, и химические свойства. Может произойти полная перекристаллизация минералов без переходов в расплавленное состояние. Все это приводит к глубокому изменения горных пород и образованию новых метаморфических горных пород. Процесс, приводящий к образованию метаморфических горных пород, носит название метаморфизм.
Q47) Факторы метаморфизма
Главными причинами, или факторами метаморфизма горных пород, являются температура, давление и химически активные вещества - растворы и летучие соединения.
Температура. Процессы метаморфизма, по мнению большинства исследователей, совершаются в интервале температур от 250 - 300°С до 800°С. Повышение температуры всего на 10°С вдвое увеличивает скорость химических реакций, а на 100°С примерно в 1000 раз. В условиях земной коры повышение температуры вызывается двумя основными причинами:
· погружением горных пород на большие глубины, что ведет к возрастанию температуры благодаря геотермическому градиенту (в среднем 1° на 33 м.);
· тепловым воздействием магматических расплавов, внедряющихся в земную кору.
Повышение температуры также может вызываться поступлением глубинных флюидов, местным возрастанием внутреннего теплового потока и некоторыми другими причинами.
Давление. Различают давление петростатическое (всестороннее) и боковое (одностороннее) или стресс.
· Петростатическое давление является функцией глубины, и возрастание его обычно связано с погружением горных пород в глубь литосферы. Петростатическое давление также повышает температуру плавления минералов.
· Боковое давление (стресс) возникает при интенсивных тектонических движениях дислокационного характера. Оно приводит к деформации, вызывает появление закономерностей пространственной ориентировки их в горной породе. Например, пластинчатые минералы располагаются плоскостями спайности перпендикулярно к направлению давления, в результате чего формируются так называемые сланцевые текстуры горных пород.
Q48) Типы метаморфизма
1) Региональный метаморфизм (10-20 км) - наиболее распространенным и важный вид метаморфизма, поскольку охватывает огромные площади или целые регионы. Он проявляется в условиях, когда отдельные участки земной коры испытывают длительное прогрессивное погружение, в результате чего горные породы перемещаются из верхних горизонтов земной коры в более глубокие. Обычно прогибание компенсируется осадконаполнением и в качестве главных факторов регионального метаморфизма, таким образом, выступает петростатическое давление и температура, постепенное повышение которой обусловлено геотермическим градиентом.
2) Контактовый метаморфизм проявляется на контактах магматических расплавов, внедряющихся в земную кору, с вмещающими породами. Вблизи контакта образуется ореол метаморфических пород, который обычно захватывает как окружающее магматическое тело породы, так и краевые части самого магматического тела. Ширина зоны контактового изменения (контактового ореола) может изменяться от сантиметров до первых километров. Основными причинами изменения горных пород в зонах контактов являются температура, возрастающая благодаря тепловому воздействию магматических масс на вмещающие породы, и химически активные газовые и жидкие растворы, выделяемые магматическими расплавами.
3) Динамометаморфизм (катакластический, дислокационный метаморфизм) проявляется, главным образом, в верхних частях земной коры, в зонах развития тектонических движений дислокационного характера. Часто локализуется вдоль разрывных тектонических нарушений. Таким образом, основной причиной, вызывающей его, является одностороннее давление. При динамометаморфизме изменяются в основном структурно - текстурные особенности горных пород. Происходит их дробление, а в более глубоких зонах в связи с повышением температуры механическое разрушение сменяется пластическими деформациями. В породах появляется полосчатость, заключающаяся в чередовании слоев различных по форме зерен и окраске минералов, возникает кристаллизационная сланцеватость.
Процесс замещения одних минералов другими, протекающий при участии газовых и жидких растворов и сопровождающийся изменением химического состава минеральных образований называется метасоматозом.
Q53) Строение платформ
Платформа - один из главных типов структурных элементов земной коры (литосферы); крупные (несколько тыс. км в поперечнике), относительно устойчивые глыбы коры выдержанной мощности, характеризующиеся очень низкой степенью сейсмичности, специфической вулканической деятельностью и слабо расчлененным рельефом земной поверхности.
B строении платформы выделяются два главных структурных яруса - нижний и верхний. Нижний ярус сформировался в геосинклинальный (доплатформенный) этап развития и состоит из сильно дислоцированных метаморфизованных горных пород, пронизанных интрузиями и глубокими разломами. Его называют фундаментом, складчатым основанием или цоколем платформы. Верхний ярус представляет собой осадочный платформенный чехол, сложенный спокойно залегающими осадочными горными породами. Местами фундамент выступает на поверхность. Такие участки платформ называются щитами. Участки платформ, на которых фундамент погружен на глубину и покрыт всюду осадочным чехлом, именуют плитами.
Q56) Эпохи складчатости
В геологической истории Земли выделяются весьма протяженные периоды, когда тектоническая деятельность была особенна активной. Эти периоды носят названия «эпохи складчатости». Это эпохи разделены периодами со спокойной тектоникой. Выделяют эпохи складчатости:
· Карельская (т.е. арийская и раннепротерозойская) – 2,7-2 млн. лет назад.
· Байкальская (т.е. поздний протерозой) – 1-0,7 млн. лет назад.
· Каледонская (т.е. начало палеозоя) – 550-450 тыс. лет назад.
· Герцинская эпоха (конец палеозоя) – 300-250 тыс. лет назад.
· Мезозойская эпоха (мезозой) – 100-70 тыс. лет назад.
· Альпийская эпоха (кайнозой) – 50-20 тыс. лет назад.
Q61) Цунами
Цунами (яп. 津波, в переводе с японского — «широкая/длинная волна») — это длинные волны, порождаемые мощным воздействием на всю толщу воды в океане или другом водоёме. Причиной большинства цунами являются подводные землетрясения, во время которых происходит резкое смещение (поднятие или опускание) участка морского дна. В момент смещения, направленного вверх, на поверхности воды образуется горб высотой до 5 м. Цунами образуются при землетрясении любой силы, но большой силы достигают те, которые возникают из-за сильных землетрясений (более 7 баллов), В результате землетрясения распространяется несколько волн. Более 80 % цунами возникают на периферии Тихого океана.
Причины образования цунами следующие:
· Подводное землетрясение (около 85 % всех цунами). При землетрясении под водой образуется вертикальная подвижка дна: часть дна опускается, а часть приподнимается. Поверхность воды приходит в колебательное движение по вертикали, стремясь вернуться к исходному уровню, — среднему уровню моря, — и порождает серию волн
· Оползни. Цунами такого типа возникают часто (около 7 % всех цунами). 9 июля 1958 года в результате землетрясения на Аляске в бухте Литуйя возник оползень. Масса льда и земных пород обрушилась с высоты 900 м. Образовалась волна, достигшая на противоположном берегу бухты высоты более 500 м.
· Вулканические извержения (около 5 % всех цунами). Крупные подводные извержения обладают таким же эффектом, что и землетрясения. При сильных вулканических взрывах образуются не только волны от взрыва, но вода также заполняет полости от извергнутого материала или даже кальдеру в результате чего возникает длинная волна.
Человеческая деятельность. В наш век атомной энергии у человека в руках появилось средство вызывать по своему произволу сотрясения, раньше доступные лишь природе. В 1946 году США произвели в морской лагуне глубиной 60 м подводный атомный взрыв с тротиловым эквивалентом 20 тыс. тонн. Возникшая при этом волна на расстоянии 300 м от взрыва поднялась на высоту 28,6 м, а в 6,5 км от эпицентра ещё достигала 1,8 м. Но для дальнего распространения волны нужно вытеснить или поглотить некоторый объём воды, и цунами от подводных оползней и взрывов всегда несут локальный характер.
· Падение метеорита может вызвать огромное цунами, так как, имея огромную скорость падения, данные тела имеют также колоссальную кинетическую энергию, которая будет передана воде, следствием чего и будет волна. Так, падение метеорита 65 млн лет назад тоже вызвало цунами, отложения которого найдены на территории штата Техас.
· Ветер может вызывать большие волны (примерно до 20 м), но такие волны не являются цунами, так как они короткопериодные и не могут вызывать затопления на берегу. Однако возможно образования метео-цунами при резком изменении давления или при быстром перемещении аномалии атмосферного давления. Такое явление наблюдается на Балеарских островах и называется Риссага.
Системы предупреждения цунами в современном мире строятся главным образом на обработке сейсмической информации. Если землетрясение имеет магнитуду более 7.0 (в прессе это называют баллами по шкале Рихтера) и эпицентр расположен под водой, то подаётся предупреждение о цунами.
Вторая возможность предупреждения о цунами это предупреждение «по факту» — способ более надёжный, так как практически отсутствуют ложные тревоги, но часто такое предупреждение может быть выработано слишком поздно. Предупреждение по факту полезно для телецунами — глобальных цунами, оказывающих влияние на весь океан и приходящих на другие границы океана спустя несколько часов. Так индонезийское цунами в декабре 2004 года для Африки является телецунами. Обнаружив реальную волну тем или иным образом, можно достаточно точно определить время её прибытия в различные населённые пункты.
Существенным моментом системы предупреждения является распространение актуальной информации среди населения. Очень важно, чтобы население представляло, какую угрозу несёт с собой цунами. Японцы имеют множество образовательных программ по природным катастрофам, а в Индонезии население в основном было не знакомо с цунами, что и стало основной причиной большого количества жертв. Также важное значение имеет законодательная база по застройке прибрежной зоны.
Q1) Содержание науки Геология
Геология, как наука, появилась практически сразу после появления человека, и входила в философию. Сам термин геология появился около 200 лет назад.
Геология – это наука о строении Земли, ее составе и развитии, процессами, протекающими в недрах и на поверхности, о формировании и размещении на Земле месторождений полезных ископаемых.
Q2) Значение геологических знаний
Современная геология служит теоретической основой для поисков/разведки/разработки всех видов полезных ископаемых, в практическая геология создает сырьевую базу промышленной индустрии.