Методы комплексного анализа и обобщения исходной информации

Обобщение информации может происходить как на эмпирическом, так и на теоретическом уровне. Как уже отмечалось, теоретические методы нефтегазопромысловой геологии в значительной мере используют теоретические положения смежных геологических и технических наук, таких как тектоника, стратиграфия, петрография, геохимия, подземная гидромеханика, физика пласта и другие, а также экономика. Вместе с тем недостаточное развитие теоретических методов вызывает широкое использование эмпирических зависимостей. Основным методом обобщения эмпирического материала в нефтегазопромысловой геологии служит метод моделирования.

Реальное геологическое пространство, содержащее бесконечное множество точек, является непрерывным. На практике же геологическое пространство представляется конечным множеством точек, т.е. является дискретным, неполноопределенным,

Неполноопределенное дискретное пространство используется для построения непрерывного геологического пространства, в котором значения представляющих интерес признаков каким-либо способом (путем интерполяции, экстраполяции, корреляции и т.п.) определены для каждой точки. Такое пространство будет полноопределенным. Переход от неполноопределенного пространства к полноопределенному есть процедура моделирования реального геологического пространства.

Следовательно, полученная модель является всего лишь представлением исследователя о реальном геологическом пространстве, составленным по ограниченному числу точек наблюдения.

Процедура моделирования реального геологического пространства является основной частью промыслово-геологического моделирования залежей, отражающего все их особенности, влияющие на разработку.

Различают два вида промыслово-геологических моделей залежей. Это статическиеи динамические модели.

Статическая модель отражает все промыслово-геологические свойства залежи в ее природном виде, не затронутом процессом разработки: геометрию начальных внешних границ залежи; условия залегания пород коллекторов в пределах залежи; границы залежи с разным характером нефтегазоводонасыщенности коллекторов; границы частей залежи с разными емкостно-фильтрационными параметрами пород-коллекторов в пластовых условиях.

Эти направления моделирования, составляющие геометризацию залежей, дополняются данными о свойствах в пластовых условиях нефти, газа, воды, о термобарических условиях залежи, о природном режиме и его потенциальной эффективности при разработке (энергетическая характеристика залежи) и др.

Статическая модель постепенно уточняется и детализируется на базе дополнительных данных, получаемых при разведке и разработке залежи.

Динамическая модель характеризует промыслово-геологические особенности залежи в процессе ее разработки. Она составляется на базе статической модели, но отражает изменения, произошедшие в результате отбора определенной части запасов углеводородов, при этом фиксируются: текущие внешние границы залежи; соответственно границы "промытого" водой или другими агентами объема залежи (при системах разработки с искусственным воздействием на пласты); границы участков залежи, не включенных в процесс дренирования; фактическая динамика годовых показателей разработки за истекший период; состояние фонда скважин; текущие термобарические условия во всех частях залежи; изменения коллекторских свойств пород.

При статическом моделировании большое место занимает графическое (образно-знаковое) моделирование, называемое геометризацией залежи. В область графического моделирования входит моделирование формы и внутреннего строения залежи. Форма залежи наиболее полно отображается на картах в изогипсах, получивших название структурных, на которых находят положение внешнего и внутреннего контура нефтеносности, а также при их наличии — положение литологических и дизъюнктивных границ залежи.

Внутреннее строение залежи отражают путем составления детальных корреляционных схем, детальных геологических разрезов (профилей) различных карт в изолиниях или условных обозначениях.

При динамическом моделировании также широко используют графическое моделирование — построение карт поверхностей нефти и внедрившейся в залежь воды, графиков и карт разработки, карт изобар и др.

При статическом и динамическом моделировании широко применяют математические методы — используют линейную интерполяцию, математические функции различной сложности — полиномы различных степеней, случайные функции, сплайн-функции и др. Применяют методы теории вероятностей и математической статистики — теории распределений, корреляционно-регрессионного анализа и др.




2.

методы комплексного анализа и обобщения исходной информации - student2.ru Рис 1. Различные типы пустот в породе. а – хорошо отсортированная порода с высокой пористостью; б – плохо отсортированная порода с низкой пористостью; в – хорошо отсортированная пористая порода; г – хорошо отсортированная порода, пористость которой уменьшена в результате отложения минерального вещества в пустотах между зернами; д – порода, ставшая пористой благодаря растворению; е – порода, ставшая коллектором благодаря трещиноватости.  
ЗАЛЕЖИ УГЛЕВОДОРОДОВ В ПРИРОДНОМ СОСТОЯНИИ

КОЛЛЕКТОРЫ НЕФТИ И ГАЗА

Коллектораминефти и газа являются такие породы, которые способны вмещать нефть и газ и отдавать их при разработке.

Соответственно емкостные свойства породы определяются ее пустотностью, которая слагается из объема пор, трещин и каверн.

Vпуст.=Vпор.+Vтрещ.+Vкаверн.

По времени образования выделяются первичные пустоты и вторичные. Первичные пустоты формируются в процессе седиментогенеза и диагенеза, то есть одновременно с образованием самой осадочной породы, а вторичные образуются в уже сформировавшихся породах.

Первичная пустотность присуща всем без исключения осадочным породам, в которых встречаются скопления нефти и газа – это прежде всего межзерновые поры, пространства между крупными остатками раковин и т.п. К вторичным пустотам относятся поры каверны и трещины, образовавшиеся в процессе доломитизации известняков и выщелачивания породы циркулирующими водами, а также трещины возникшие в результате тектонических движений. Отмечается заметное изменение пористости в зонах водонефтяных контактов.

На (рис.1 ) показаны некоторые типы пустот встречающиеся в породах.

По величине их диаметра поры подразделяются: насверхкапиллярные, капиллярные и субкапиллярные.

Таблица
Название диаметр движение жидкости
Сверхкапиллярные >0.5 мм подчиняется законам гидростатики происходит под воздействие силы тяжести
Капиллярные 0.5-0.0002 мм не подчиняется законам гидростатики. Для перемещения жидкости требуются усилия, значительно превышающие силу тяжести.
Субкапиллярные <0,0002 мм жидкость практически не перемещается

Наши рекомендации