Характеристика проектируемого полигона захоронения сточных вод как источникавоздействия на окружающую среду
Закачка промышленных сточных вод в глубокие водоносные горизонты, как любое техногенное явление, оказывает воздействие на окружающую природную среду. Это влияние будет сказываться как при строительстве сооружений, так и при их эксплуатации. И в том, и в другом случае это могут быть процессы, возникающие как при нормальной эксплуатации, так и при воздействии различных аварийных ситуаций. Последствия воздействия могут быть как обратимыми, так и необратимыми.
Для того чтобы оценить влияние любого воздействия, нужно знать исходное состояние объекта. Выбор ПЗС как метода нейтрализации основаннаанализе недостатков и негативного воздействиянаприродную среду других физико-химических способов обезвреживания.
Применение электродиализного метода для очистки сточных вод, по данным ВНИИХТ, при концентрации солей 20-30г/дм3 в аппаратах типа ЭДК требует большого расхода электроэнергии(5-7 кВт-ч/кг переносимой соли), составляющей 180-250 кВт-ч/м3 вод. Учитывая, что доля электроэнергии составляет в себестоимости около 30 %, для этого метода она более 100 руб./м3. Кроме того, получаемый при этом концентрат необходимо упаривать и затем подвергать захоронению. При упаривании неизбежны выбросы вредных веществ в атмосферу, а при хранении концентрата не исключено попадание водо растворимых солей в поверхностные и грунтовые воды.
Применение обратного осмоса для очистки сточных вод пока сдерживается малой производительностью серийных установок, стойких к агрессивной среде. Например, мембранная установка типа МР100/63 ЗТ для очистки слабо концентрированных промывных вод имеет производительность всего 18 м3/сут. Но и в этом случае получаемый концентрат также подлежит упариванию.
Применение термических методов, основанных на упаривании сточных вод после их нейтрализации и длительного отстоя в аппаратах погружного горения или сжигания в циклонных печах с обязательной доочисткой выходящих газов, требует огромного количества газа (75-125 м3 газа/м3 СВ). При этом отмечается значительный выброс вредных веществ в атмосферу и образование сухих остатков солей, захоронение которых потребует строительства бетонированных могильников, что экологически небезопасно, особенно в условиях высокого уровня грунтовых вод.
Как отмечено выше, по своей экономичности и экологической безопасности способ подземного захоронения СВ в глубокие водоносные горизонты явно предпочтительнее. Прежде всего следует отметить достаточно хорошую изученность геологического строения, получаемую при разведке и эксплуатации месторождений. Опыт использования ПЗС показывает, что при качественном строительстве и оборудовании скважин, соблюдении режимов и технологий закачки возможно обеспечение экологической безопасности даже при использовании вышележащих водоносных комплексов для водоснабжения (например, в Тамбове) и бальнеологии (например, в Пензе).
Подземное захоронение промышленных сточных вод, как всякое техногенное явление, конечно, оказывает воздействие на окружающую природную среду. Однако последствия этого воздействия(табл. 5) несомненно меньше, чем при других способах обезвреживания.
Для функционирования поглощающих скважин необходимо создание определенной репрессии на пласт, зависящей от гидродинамических параметров и приемистости скважины. За время эксплуатации она будет расти как засчет увеличения зоны влияния, так и из-за кольматации пласта.
Повышение давления может происходить на значительной площади, определяемой радиусом закачки
Rь»1,5× , (32)
где Rь- радиус влияния, м;
c - пьезопроводность пласта, м2/сут,
t -продолжительность закачки, сут.
Принимая среднее значение пьезопроводности 5×105 м2/сути срок эксплуатации полигона 25 лет (104сут), площадь влияния, на которой может произойти увеличение пластового давления, достигнет 35 тыс. км2.
Изменение гидродинамических условий может вызвать усиление перетекания подземных вод в соседние коллекторы через слабопроницаемые пропластки и уменьшение поступления из других, а также изменение дебитов родников и эксплуатационных скважин.
Значение допустимой репрессии ограничивается прочностью эксплуатационных колонн, цементного камня и устьевого оборудования. Во время закачки необходим ежедневный контрольза буферным, затрубным и межколонным давлением с регистрацией в журнале. Рост буферного или затрубного давления при постоянном или уменьшающемся расходе свидетельствует о кольматации пласта. Резкое уменьшение давления может быть при прорыве эксплуатационной колонны выше интервала перфорации. В этих случаях необходимы контрольные замеры забойного давления, положения забоя и работы по определению целостности колонн(термометрия, АКЦ и др.). Появление избыточного давления в заколонном и межколонном пространстве возможно при разрушении цементного камня и заколонных перетоках. В этом случае закачка должна немедленно прекращаться и проводиться геофизические работы по контролю состояния цементажа и, возможно, ремонтные работы.
Закачка СВ, имеющих температуру ниже пластовой, вызывает некоторое охлаждение недр. Учитывая, что охлаждению подвергается в основном коллектор, это явление следует использовать для контроля за местонахождением поглощающего интервала. Нижняя его граница определяется резким увеличением градиента на термограмме работающей скважины, а верхняя - отрицательной аномалией на термограмме после остановки закачки. Температура недр, хотя и медленно, но восстанавливается, и это после прекращения работы полигона может вызвать необратимые явления в пласте.
Таблица 5
Характеристика воздействия процессов глубинногозахоронения сточных вод на геологическую среду
Основные процессы, сопровождающие закачку | Последствия процессов | Параметры, определяющие протекание процессов | Математические модели и методы их исследования | Масштабы проявления |
1. Изменение гидродинамического поля в пласте-коллекторе | Формирование вокруг поглощающей скважины купола репрессии | Коэффициенты проницаемости, гидропроводности и пьезопроводности, режимы и объемы закачки, граничные условия пласта | Уравнение фильтрации, его аналитические и конечноразностные решения. Формулы | Изменение напоров пластовых вод в пластах-коллекторах в период закачки. После прекращения закачки обстановка восстановится |
2. Заполнение пластов-коллекторов сточными водами | Вытеснение пластовых вод сточными водами из порового пространства, частичное смешение с ними | Поле напоров, удельная емкость (эффективная толщина и пористость) | Уравнения фильтрации и массопереноса, их аналитические и конечно-разностные решения. Формулы. | Распространение сточных вод в пласте-коллекторе с учетом частичного смешивания (до 30 %) и фильтрационной неоднородности произойдет на площади в соответствии с расчетами |
3. Изменения геостатического поля | Изменения горного давления и распределения напряжений в геологической среде | Гидродинамическое поле, горное давление, физико-механические свойства пород | Системы уравнений напряженного состояния | Практически не сказывается на распределении напряжений |
4. Изменения геотермического поля | Формирование вокруг поглощающих скважин областей охлаждения пласта-коллектора | Режим закачки, температура сточных вод, теплоемкость и теплопроводность пород | Уравнения теплопроводности, построения геотерм | Формирование областей охлаждения пласта против интервалов поглощения на площади 200-300 м2. Восстанавливается после прекращения закачки, используется как контрольный метод |
Физико-химические процессы, происходящие при этом, могут вызвать широкий круг изменений как в подземных водах, так и в водовмещающих породах и покрышках. Например, если минерализация сточных вод ниже минерализации пластовых вод, то возможно уменьшение проницаемости за счет набухания глинистых песчаников. Наоборот, проницаемость коллекторов может улучшиться при закачке минерализованных или кислых вод.
Все физико-химическиепроцессы, происходящие в пласте (растворение, выщелачивание, выпадение осадка, сорбция, ионный обмен, биохимические явления) должны изучаться как в лабораторных условиях на стадии проектирования, так и в условиях работающих полигонов.
Флюиды многих месторождений и подземных хранилищ газа содержат анаэробные бактерии. Попадая в благоприятную обстановку, они вызывают вторичные образования в пластах, коррозию оборудования, кольматацию коллектора и трубопроводов. В комплекс подготовки сточных вод к закачке должна включаться не только их очистка, но и обеззараживание.
Если в состав СВ входят ионы кальция и сульфатов, то из-за быстрого охлаждения пласта при закачке образование гипса исключено. Однако на границе прогрева зона захоронения сточных вод может оказаться запечатанной гипсовой оторочкой. При этом эффект запечатывания, вероятно, будет увеличен из-за гидроксидов, которые также будут выпадать в этих условиях.
Исходя из изложенного следует, что в процессе закачки не желательны длительные остановки, которые могут привести к восстановлению температуры в пласте. Хотя после окончания захоронения СВ это явление станет благоприятным фактором, сдерживающим скорость сноса «загрязненного пятна» вплоть до полного его запечатывания. Поэтому в процессе промышленной закачки и после ее завершения необходимо вести наблюдения за восстановлением геотермального поля на участке и изменениями гидродинамической связи «пятна» с законтурной областью во времени.
Кроме закономерного воздействия подземного захоронения СВ, необходимо дать анализ гипотетических осложнений, вплоть до аварийных ситуаций, которые могут возникнуть с разной степенью вероятности.
Гипотетические аварийные ситуации по характеру вызвавших их причин можно подразделить на следующие типы:
связанные с ошибками в оценке исходных параметров, использованных в расчетах и моделях;
обусловленные изменением геологических условий эксплуатации вследствие естественных преобразований геологической среды;
являющиеся следствием развития в водоносных горизонтах и перекрывающих их покрышках процессов, обусловленных захоронением;
инициированные повреждением или ухудшением технического состояния скважин и поверхностного оборудования;
вызванные ошибками персонала при эксплуатации;
возникшие в связи с активным воздействием антропогенного фактора;
связанные со стихийными бедствиями и другими сверх редкими явлениями.
Как указывалось выше, регион, где предполагается организация подземного захоронения сточных вод, как правило, достаточно полно изучен в геологическом отношении. Однако не исключены отклонения в определении гидродинамических параметров пласта, поэтому расчеты продвижения сточных вод должны выполняться с запасом, а отклонения учитываться на стадии их опытно-промышленной закачки.
Собственно аварийная ситуация и не возникнет, так как сточные воды во всех случаях останутся впределах выделенного пласта - разной будет только площадь их распространения.
Естественные изменения геологической среды, которые подразделяются на экзогенные и эндогенные, малозначимы и не вызовут аварийных ситуаций на полигоне захоронения. Обычно в широких масштабах развиты такие экзогенные геологические процессы, как оползнии оврагообразование. Но они затрагивают верхнюю часть геологической среды(первые десятки метров) и для коллекторских горизонтов, залегающих на глубине1000-1500 м малозначимы. Эндогенные процессы являются основной причиной формирования тектонических структур. Усиление тектонической активности не бывает внезапным, ей предшествует длительный период усиления сейсмичности, измеряемый десятками и сотнями тысяч лет. Как показывает опыт, даже землетрясения практически не оказывают влияния на горизонты, залегающие на этих глубинах, в худшем случае может разрушиться устьевое оборудование скважин. Некоторые оппоненты высказывают опасения, что не исключена эрозия пластов-коллекторов при подъеме их на поверхность, забывая что эти процессы длительные и находятся за пределами времени разумного прогнозирования и сопоставимы с временем существования человечества.
В ряде районов может вызывать опасения формирование очагов «вызванных» землетрясений, так как одним из основных факторов их формирования служат изменения давления воды, заключенной в порово-трещинном пространстве пород. Теоретически «вызванное»землетрясение может произойти, если давление жидкости будет приближаться к геостатическому. Неблагоприятными факторами являются высокая естественная сейсмичность района, присутствие в составе вод поверхностно-активных веществ и ионов электролитов. Несмотря на сложность этого явления, опасность «вызванных» землетрясений явно преувеличена. Например, длительная эксплуатация Северо-Ставропольского ПХГна базе выработанного месторождения, несмотря на циклический характер работы, не вызвала усиления сейсмичности.
Учитывая, что закачка ведется только в случае удовлетворительной совместимости сточных вод с пластовыми водами и породой водоносных горизонтов, негативных последствий, связанных с разрушением покрышек (растворение кислотами, выщелачивание и т.п.),как правило, не ожидается. Расчеты диффузии через покрышки толщиной более 50 м практического интереса не представляют.
Аварийные ситуации могут возникнуть при внезапном разрушении оголовка поглощающих скважин или подающих трубопроводов в результате различных природных катаклизмов или диверсий и т.п.В результате разлива сточных вод возможно загрязнение грунта. Время разлива оценивается несколькими часами до его выявления операторами, и загрязнение поверхности будет ограничено первым поясом санитарно-защитной зоны. Незначительные масштабы загрязнений обусловлены низким давлением закачки, вплоть до свободного налива.
Аварийные ситуации и осложнения, связанные с попаданием сточных вод в неглубокозалегающие горизонты могут возникнуть при ухудшении технического состояния скважин, в частности, в результате нарушения герметичности обсадных колонн и образования «свищей» при совпадении мест не герметичности с интервалами отсутствия цемента или низкого качества цементирования. Эти нарушения могут стать причиной попадания СВ и пластовых вод в вышележащие комплексы. Загрязнения будут иметь ограниченные масштабы в связи с относительно высоким гидравлическим сопротивлением мест утечек и низкими коллекторскими свойствами пласта, кроме того, они будут находиться в пределах горного отвода недр и будут быстро выявлены в наблюдательных скважинах.
Для предупреждения и своевременного обнаружения подобных явлений предусматриваются специальные мероприятия, рассмотренные ниже.
Контролю за подземным захоронением СВ придается особое значение, так как этот способ нейтрализации применяется в исключительных случаях, когда неприменимы традиционные методы очистки и обезвреживания при соблюдении целого ряда специальных требований и условий.
Глубокие водоносные горизонты, в которые осуществляется сброс сточных вод, перекрывающие их флюидоупоры, вышележащие водоносные горизонты, воды которых могут использоваться в хозяйстве или просто иметь связь с поверхностью, представляют собой часть природной системы, практически недоступной для непосредственного обследования и наблюдения. Исходные данные о геологической среде и гидрогеологической обстановке могут быть известны только с некоторой долей неопределенности, их моделирование производится также с целым рядом допущений и упрощений.
Кроме объективных трудностей, существует ряд субъективных, заставляющих предъявлять к контролю повышенные требования. Подземное захоронение является весьма редким и необычным способом обращения со сточными водами, практически незнакомым административными контролирующим органам и даже специалистам, не имеющим опыта гидрогеологических исследований глубоких водоносных комплексов.
Промышленные сточные воды, находящиеся в недрах, нельзя непосредственно осмотреть, удостовериться, что они находятся именно в пласте-коллекторе и в пределах заранее установленных границ, что время движения «загрязненного пятна» измеряется сотнями и тысячами лет. Это вызывает недоверие к данной технологии и сомнения в ее безопасности и надежности.
Только проведение комплексного контроля глубинного захоронения СВ,информирование общественности и населения о его результатах, сравнение состояния окружающей природной среды при использовании традиционных методов (сжигание, упаривание и т.п.) и при подземном захоронении позволяет ликвидировать возникающее недоверие (Б. П. Акулинчев, 1995).
Первым и весьма важным этапом контроля еще до начала подземного захоронения должно быть изучение состояния окружающей среды, включая геологическую. При регистрации фона необходимо собрать данные о состоянии поверхности водоемов и водотоков, грунтовых и подземных вод, включая как горизонты, в которые будет вестись сброс сточных вод, так и буферные, и контролируемые. На основе этих данных производится оценка состояния окружающей природной среды, возможного влияния на нее подземного захоронения, разрабатывается система мониторинга, уточняются способы и технология контроля.
Первым этапом контроля состояния недр является контроль за закачкой СВ. При этом регистрируют параметры нагнетания и состав вод, их соответствие регламенту. Основными параметрами контроля являются давление и объем закачки, которые не должны превышать установленных пределов, а также химический состав СВ и их физические характеристики.
Давление и объем должны фиксироваться непрерывно, как на подающих насосах, так и на устье поглощающих скважин, чтобы исключить порывы и нарушения в подающих трубопроводах.
Периодический контроль должен вестись за такими показателями сточных вод, от которых прежде всего зависит устойчивость эксплуатации. В первую очередь необходим контроль за содержанием мелкодисперсных взвешенных твердых веществ и нефтепродуктов, вызывающих в основном кольматацию пласта.
Результаты закачки СВ должны фиксироваться показывающими и самопишущими приборами, заноситься в журнал закачки или компьютер. Кроме того, должна быть предусмотрена сигнализация о приближении или достижении критических значений контролируемых параметров.
Контроль состояния геологической среды подразделяется на следующие основные виды:
гидродинамический контроль -оценка состояния полей напоров в поглощающих пластах и контролируемых горизонтах;
гидрогеохимический -определение изменений состава пластовых вод, компонентов сточных вод и физико-химических показателей коллекторов;
геофизический контроль -оценка изменений физических полей в недрах, включая температурное поле, электро сопротивлений жидкостей, сейсмических эффектов.
Гидродинамический контроль, основывающийся на наблюдениях за изменениями напоров пластовых жидкостей в скважинах, позволяет моделировать структуру фильтрационного потока на полигоне захоронения. Прогноз изменения уровней на разных расстояниях от поглощающих (нагнетательных) скважин базируется на их замерах в наблюдательных скважинах. С этой целью последние оборудуются электроуровнемерами. По результатам гидропрослушивания в наблюдательных скважинах строят графики приращения уровней или давления от логарифма времени. При близких гидродинамических параметрах пласта графики будут параллельны.
Максимальные размеры зоны, в которой произойдут изменения пластового давления за счет репрессии на пласт, оценивают исходя из зависимости (15).
Если в зоне влияния закачки не происходит смены гидродинамических параметров, литологического или стратиграфического замещения, нет проводящих или непроводящих тектонических нарушений, то графики приращений прямолинейны и пласт считают гидродинамически не ограниченным. Резкое, в два-три раза повышение уклона свидетельствует о влиянии непроницаемой границы. Снижение уклона указывает на перетекание в другие водоносные пласты или горизонты.
Таким образом, методы гидродинамического контроля позволяют не только уточнить фильтрационные параметры пласта-коллектора, но и подтвердить изолированность водоносных горизонтов, расположенных над пластом-коллектором или обнаружить и взаимосвязь. Очень важно, что тенденцию распространения сточных вод или межпластовые перетоки можно выявить этими методами задолго до их появления в наблюдательных скважинах. Благодаря значительно более высокой скорости изменений гидродинамического поля по сравнению с продвижением вод могут быть своевременно намечены мероприятия по изменению режимов закачки, ремонту скважин или их ликвидации.
Гидрогеохимический контроль - метод наблюдений за составом жидкостей, выносимых флюидальным потоком из эксплуатационных скважин. Он осуществляется посредством выполнения химических анализов проб воды через определенные промежутки времени. В аналитической практике принято определять следующие компоненты состава: СI, HCO3, CO32, SO42, Ca2+, Mg2+, Na+, K+, Br, J, а также рН и общую минерализацию.
Метод обеспечивает контроль за процессом поступления пластовой воды в скважину (процесс обводнения) на ранней стадии обводнения месторождения в процессе разработки. Кроме того, он позволяет выявить возможное продвижение промышленных сточных вод в пласте, если закачка СВ проводится в нижнюю водоносную часть эксплуатируемого горизонта.
Очень высокие требования предъявляются к качеству разобщения водоносных горизонтов. Оценку качества цементирования проводят геофизическими методами в соответствии с временной инструкцией, разработанной специалистами институтов«Гидроспецгеология» и «ВНИПИпромтехнология». Качество цементирования затрубного пространства обсадных колонн против водоносных и водоупорных комплексов(горизонтов) определяется двумя категориями - удовлетворительное и плохое. Кпервой относятся интервалы жесткого контакта и (или) чередования участков жесткого контакта и отсутствия его. Ко второй категории относят интервалы скользящего контакта или его отсутствия при зазорах между колонной и цементом более 35 мк, а также интервалы отсутствия или пониженной плотности цементного камня за колонной.
Интервал чередования должен иметь не менее трех участков жесткого контакта, каждый толщиной не менее 5 м, их доля должна составлять не менее 30% общей толщины интервала. Интервал скользящего или плохого (отсутствия)контакта между двумя жесткими не должен превышать 20 м.
По данным геофизических исследований (АКЦ) по каждому водоносному комплексу (горизонту) определяют коэффициенты качества цементирования, представляющие собой отношение суммы толщины интервалов удовлетворительного качества цементного камня к общей толщине оцениваемого интервала. Предельные минимальные значения коэффициентов качества составляют для водоупоров толщиной:
более 50 м - не менее 0,5;
30-50 м - не менее 0,6;
менее 30 м - не менее 0,7.
Если полученные значения коэффициентов качества не удовлетворяют указанным выше требованиям, проводят специальные исследования по оценке состояния цемента за колонной под давлением,б лизким к давлению нагнетания.
Рис. 7. Геотермический метод контроля за закачкой СВ (скв.1 - Люминофор):
1 - распределение температуры до закачки; 2, 3, 4 – распределение температуры после прекращения закачки через 19 сут (зима), 95 сут (лето), 125сут (зима); 5 - распределение температуры во время закачки (Q - 2000м3/сут)
Рис. 8. Принципиальная схема обустройства нагнетательной системы:
1 - емкость для подготовки СВ; 2 - нагнетательныенасосы; 3, 7, 8, 9, 10 - контрольные манометры; 4 - расходомеры; 5 -нагнетательный трубопровод; 6 - поглощающая скважина; 11 - контролируемыеводоносные горизонты; 12 - водоупоры; 13 - поток СВ в НКТ; 14 - пакер; 15 -поглощающий пласт; 16 - цементное кольцо;
Рн, Р6,Рз, Рмк, Рэк - давление в насосе, буфере,затрубном, межколонном и заколонном пространстве
Таблица 6