По мнению В.И. Вернадского, земная кора - это область былых биосфер. Биосфера существовала на протяжении геологической истории от криптозоя до наших дней и была широко проникнута живым веществом.
Биосфера Вернадского неразрывно связана с его концепцией пространства-времени, т.е. она трехмерна и геоисторична. Сведение её к современной жизнедеятельной плёнке планеты не просто обедняет понятие биосферы, а лишает её самой основы - бесконечной длительности эволюции, сложности неравномерного исторического развития, его непрерывности, направленности и необратимости. Нынешний срез биосферы, какой бы сложной и экологически дробной она нам ни представлялась, в своём вхождении в ландшафты Земли, в литосферу, в гидросферу (вплоть до человека в космосе) - только вершина древа - гигантского пути, идущего из геологического прошлого, без знания которого вся ослепительная красота современной мозаики жизни безродна и слепа.
Таким образом, представление о биосфере как обособленной закрытой самоуправляющейся системе - современной живой специфической плёнке Земли - должно быть отвергнуто. Биосфера - это открытая система, существующая, вероятно, столь же долго, как и сама Земля. В работе "Химическое строение биосферы Земли и её окружения" В.И. Вернадский пишет: "Мы не знаем никакого промежутка времени на нашей планете, когда на ней не было бы живого вещества, не было бы биосферы". Биосфера непрерывно функционирует только в силу своей неразрывной связи с другими геосферами нашей планеты.
Вернадский неоднократно подчёркивает, что ни один живой организм (и в том числе человек) в свободном состоянии на Земле не находится. Все организмы неразрывно и непрерывно связаны, - прежде всего, питанием и дыханием - с окружающей их материально-энергетической средой. "В гуще, в интенсивности и в сложности современной жизни человек практически забывает, что он сам и всё человечество, от которого он не может быть отделён, неразрывно связаны с биосферой - с определённой частью планеты, на которой они живут".
Биосферная концепция Вернадского лишена узкой биологичности и поэтому не может быть автоматически вписана только в сферу биологических наук. Это широкое междисциплинарное направление в науках о Земле и жизни, находящееся к тому же во все возрастающей связи с глобальной социологией и общественными науками. В этом и состоит огромное значение современных комплексных биосферных знаний в науке и в глобальных биосферных прогнозах наших дней, ставших особенно острыми в условиях неконтролируемой технократической деятельности людей.
Вопрос 2
Геология - комплекс наук о составе, строении и истории развития земной коры и Земли:
Люди давно научились находить, добывать и использовать камни, глины, пески, руды ряда металлов, многие минералы, подземные воды. Первые сведения об элементах геологического знания относятся к античности. Эмпедокл выдвигает предположение о том, что внутри Земли находится огненно-жидкая масса, которая является причиной вулканических извержений и горячих источников. Аристотель считал, что Земля находится в состоянии непрерывного развития, и придавал большое значение текучим и подземным водам в изменении поверхности Земли; ему принадлежит одна из первых классификаций минералов и горных пород. Теофраст полагал, что найденные на суше гальки и раковины свидетельствуют о том, что ранее в этих местах существовало море. Размышления о внутренних и внешних процессах, происходящих на Земле, можно встретить у Овидия, Геродота, Страбона и т.д.
В V-XVI вв. многие представления античного времени были отвергнуты. Считалось, что Земля создана в ее современном виде Богом, а событием, изменившим ее облик, признавался всемирный потоп. Центр научных исследований переместился на Восток. В X-XI вв. аль-Бируни и Ибн Сина (Авиценна) включали в круг своих научных интересов геологические явления. Особое внимание уделялось минералогии и горному делу. В середине XVI в. немецкий ученый Г. Агрикола обобщил опыт горно-металлургического производства.
В первой половине XVII в. появляются цельные космогонические гипотезы (Р. Декарт, Г.Ф. Лейбниц), из которых пытались вывести основы геологических знаний (существование горных пород, минералов, слоев, складок, магмы и т.д.). (К числу космогонических разработок, появившихся позже, в XVIII в., относятся гипотезы Ж. Бюффона, И. Канта и П. Лапласа, О.Ю. Шмидта и др.) Земная поверхность, по Декарту, Лейбницу и Н. Стенону, сформировалась в результате обрушения частейземной коры в подземные пустоты; образовавшиеся понижения заливались водой и покрывались осадками. В отличие от них англичанин Р. Гук и итальянец А.Л. Моро полагали, что основная роль в формировании земной поверхности принадлежит внутренним процессам - землетрясениям и вулканическим извержениям. В середине XVII в. норвежский ученый М.П. Эшольт ввел термин <геология>. Датчанин Стеной, живший в Италии, сформулировал два принципа, которые и сегодня рассматриваются как основные постулаты: нормальное залегание слоев, возникших в водных бассейнах путем осаждения, создает параллельные горизонтальные границы; слои, находящиеся внизу, возникли раньше верхних слоев. Нарушение нормального залегания вызвано движениями земной коры.
К середине XVIII в. геология сформировалась как специфическая система взглядов, сложился круг геологических задач и оформилась генетическая направленность исследований, связанная с попытками ответить на вопросы, каким образом возник и развивался тот или иной геологический объект, какие причины обусловили геологические явления. М.В. Ломоносов разделяет факторы изменения земной поверхности на внутренние и внешние, а причиной движений земной коры и вулканизма назвал <подземный жар>, который вызывает поднятие толщ горных пород. В.М. Севергин составляет обширные сводки по минералогии и полезным ископаемым России. Шотландский ученый Дж. Геттон считал источником <подземного жара> расплавленные в глубоких недрах массы. История Земли, по Геттону, состоит из повторяющихся циклов: длительные эпохи разрушения материков, сопровождавшиеся отложением продуктов этого разрушения на морском дне, сменяются кратковременным поднятием морского дна, а также внедрением и излиянием вулканических пород. Немецкий ученый А.Г. Вернер придавал гораздо большее значение внешним процессам, прежде всего деятельности воды. Все горные породы он рассматривал как водные осадки. Научное направление Вернера называли нептунизмом (по имени римского бога подводного царства Нептуна), направление Геттона - плутонизмом (по имени греческого бога подземного царства Плутона). Заметим, что уже в Древней Греции некоторые философы считали основной стихией воду, а другие - огонь.
В первой половине XIXв. англичанин У. Смит установил, что возраст осадочных горных пород может сопоставляться по заключенным в них остаткам ископаемых организмов. Это привело к спорам о причинах смены фаун и флор в истории Земли. Ж.Б. Ламарк полагал, что от слоя к слою под влиянием изменения внешней среды постепенно вымирают одни организмы и появляются другие. Напротив, Ж. Кювье обращал внимание на резкие изменения фауны и флоры на границах слоев и объяснял их резкими перестройками в устройстве земной поверхности, приводившими к исчезновению одних видов животных и растений и появлению других. Не признавая превращения одних видов в другие, он выдвигал идею о многократном повторении актов творения живых организмов Богом после каждой геологической катастрофы.
В 1830-е гг. шотландский геолог Ч. Лайель применил метод актуализма, выразив его в формуле <Настоящее есть ключ к познанию прошлого>. Он считал, что силы, преобразующие лик Земли, на протяжении ее истории были однообразны по характеру и интенсивности. (Это положение получило название уни-формизма.) Эти силы действуют медленно и непрерывно, а суммирование таких изменений в течение геологического времени приводит к грандиозным преобразованиям Земли.
В конце XIX - начале XX в. геология превращается в комплексную науку, что связано с введением в нее физико-химических и математических методов исследований. Открытие радиоактивности повлекло за собой создание абсолютной геохронологии: радиоактивные изотопы стали использовать для определения возраста Земли и длительности отдельных периодов. В начале XX в. был предложен ряд гипотез о внутренних причинах формирования земной поверхности. Гипотеза дрейфа материков А. Вегенера (мобилизм) утратила свое значение, и в 1930-1950-е гг. доминирующее положение заняли концепции В.В. Белоусова и голландского ученого Р.В. ван Беммелена, которые исходили из примата вертикальных движений.
С середины XX в. на базе достижений геофизики и морской геологии происходит пересмотр взглядов на внутренние причины формирования земной поверхности, что обусловило возрождение мобилизма. Результатом этих открытий стало появление тектоники литосферных плит. Современные методы исследований позволили детально изучить строение земной коры и выявить неоднородность мантии. Новые возможности открыло усовершенствование методов изучения химического состава минералов и горных пород. Изучение поверхности Земли из Космоса выявило крупные глубинные структуры в строении земной коры. Исследование других тел Солнечной системы дает материал для суждения о ранних стадиях эволюции Земли. В геологических науках появляются новые направления исследований, связанные с глобальными проблемами человечества: ресурсопользование, экологическая геология и т.п.
Вопрос 3
В современной геотектонике существует пара феноменологических концепций, и в ней одна концепция исключает другую или, по крайней мере, сильно ограничивает сферу ее применения. Это "фиксизм" и "мобилизм". В основу концепций положено представление о примате тектонических движений или главенствующей направленности движения блоков коры. Геологи, занимающиеся вопросами геотектоники, придерживаются одной из концепций в том или ином выражении. И это естественно - каждый исследователь должен иметь свое научно-теоретическое кредо, на котором базируются его разработки. Концепция содержит в себе рациональное зерно и базируется на сумме фактов и закономерностей, отражающих природные реалии. Но она не может в своем ортодоксальном выражении удовлетворить геологов.
Здесь необходимо обратить внимание на два момента.
1. Признание любой из существующих сейчас геотектонических гипотез на уровне "научной основы" геологических построений неизбежно приведет и к признанию единого ведущего механизма развития верхних оболочек Земли (по крайней мере коры и верхней мантии) и детерминированности вещественных и структурных преобразований в коре от процессов, происходящих в мантии. Однако, в настоящее время накопилось много наблюдений, что в земной коре могут идти свои, только ей свойственные процессы, приводящие к значительным, а то и полным структурно-вещественным преобразованиям. Эти процессы могут неожиданным образом отражать и те явления, которые происходят в более глубоких оболочках Земли.
2. Не может удовлетворить геологов эта концепция еще и потому, что она не базируется на четко сформулированных и объективно существующих фундаментальных геологических законах. А реальная действительность такова, что до настоящего времени геология не имеет своих четко сформулированных и объективно установленных фундаментальных закономерностей, которые могли бы быть базой всех без исключения геологических исследований, гипотез, теорий, как служат, например, теоретической механике законы Ньютона.
Возможно, необходимо объединить все перечисленные ортодоксальные представления, трансформировать их в концепцию структурно-вещественного преобразования, вещества Земли на основе признания ведущей роли его материального перераспределения, осуществляемого в различных формах.
В.И.Хаин высказывается более определенно: накопление фактического материала по проблемам ранней стадии развития Земли, происхождения океанов, палеомагнитных исследований и т.д. рано или поздно "взорвет плито-тектоническую парадигму" и вызовет необходимость ее замены. Такая опасность грозит тектонике плит со стороны фактов, указывающих на гораздо большую масштабность ее латеральных перемещений, на неизмеримо более сложную картину магнитных неоднородностей и перемещении вещества мантии, чем это поддается объяснению в рамках классической теории плит.
Фиксизм
Фиксизм (от лат. fixus - твёрдый, неизменный, закрепленный) - геологическая гипотеза, исходящая из представлений о незыблемости (фиксированности) положений континентов на поверхности Земли и о решающей роли вертикально направленных тектонических движений в развитии земной коры. Фиксизм, вместе с мобилизмом, одно из двух направлений в тектонике, исходящее из представлений о незыблемости (фиксированности) положения континентов на поверхности Земли и о решающей роли вертикально направленных тектонических движений в развитии земной коры. Фиксизм являлся одним из ведущих направлений в геологии вплоть до середины 60-х гг. 20 в., когда получили развитие положения мобилизма. В основе фиксизма лежит положение об унаследованном развитии плит, платформ, антиклинориев и др. источников сноса терригенного материала, о весьма продолжительном существовании глубинных разломов, о длительном проявлении однотипного магматизма в одних и тех же районах. Сторонники фиксизма (В. В. Белоусов, Х. О. Мейерхоф и др.) отрицают положение мобилизма о возможности горизонтальных перемещений крупных плит литосферы; допускаются лишь незначительные (до нескольких десятков км) горизонтальные перемещения сравнительно небольших участков земной коры по надвигам (шарьяжам) и сдвигам, вызываемые воздействием вертикальных движений. Составная часть концепции фиксизма - представление о формировании океанических впадин в результате опускания земной коры без значительного растяжения, с преобразованием материковой коры в более тонкую океаническую, а не вследствие раздвижения континентов, как утверждают мобилисты. Основные различия в тектонических условиях на поверхности Земли определяются, согласно фиксизму, различиями в эндогенном режиме внутренних частей.
Мобилизм
Мобилизм (от лат. mobilis -- подвижной) - гипотеза, предполагающая большие (до нескольких тыс. км) горизонтальные перемещения материковых глыб земной коры (литосферы) относительно друг друга и по отношению к полюсам в течение геологического времени. Мобилизм противопоставляется фиксизму. Предположения о подвижности материков начали высказываться ещё в 19 в., но научно разработанная гипотеза Мобилизм была сформулирована впервые в 1912 немецким геофизиком А. Вегенером (теория дрейфа материков). Современный вариант мобилизма -- «новая глобальная тектоника» (или тектоника плит) в значительной мере основана на результатах изучения рельефа дна и магнитных полей океанов, а также на данных палеомагнетизма. Согласно этим представлениям, происходит медленное (в среднем 1--5 см в год) перемещение монолитных плит, включающих не только материковые глыбы, но и примыкающие к ним обширные области океанической коры вместе с самой верхней частью мантии. Плиты расходятся в обе стороны от срединноокеанических хребтов к молодым складчатым поясам (Анды, Гималаи) и островным дугам. Здесь происходит погружение переднего края одной из двух встречающихся плит на значительную глубину (до 700 км) вдоль наклонных разломов, характеризуемых высокой сейсмичностью; в материковой коре другой плиты под влиянием сжатия образуются складки и надвиги. На тыльной стороне перемещающихся глыб, т. е. у оси срединных океанических хребтов, возникают структуры растяжения -- рифты. Подъём вещества из верхней мантии в «щель», раскрывающуюся при раздвигании плит, и последующее излияние базальтовых лав формируют в рифтовых зонах новообразованный слой коры; т. о. происходит расширение площади океанического дна.
На основании сходства геологического строения разобщённых частей палеозойских материков -- Гондваны (охватывавшей Южную Америку, Африку, Индостан, Австралию и Антарктиду) и Лавразии (Северная Америка, Европа, северная половина Азии) и совпадения контуров их материкового склона предложены палеотектонические реконструкции. Эти построения подтверждаются палеоклиматическими и палеомагнитными данными, которые показывают, что различные части Гондваны находились в конце палеозойской эры гораздо ближе к южному полюсу, чем сейчас, а Северная Америка располагалась рядом с Европой. Перемещения, происходившие в течение мезозоя и кайнозоя, привели к почти полному исчезновению геосинклинального океана Тетис и к образованию новых океанов -- Индийского и Атлантического. В качестве основной причины мобильности материков обычно указываются конвенционные течения вещества мантии.
Противостояние двух теорий
В науке о Земле сторонники теории тектоники материковых плит (мобилизма) уже давно одержали убедительную победу над приверженцами теории фиксизма. Сейчас даже школьники знают, что 150 миллионов лет назад произошел распад праматерика Гондвана на Африку,Южную Америку, Антарктиду, Австралию и Индию. Их движение со скоростью 3-5 см в год и продолжается по настоящее время, порождая землетрясения и извержения вулканов. Однако теория мобилизма не объясняет первопричины возникновения дрейфа континентов.
Системный анализ геофизических процессов, происходивших на протяжении длительного времени, позволяет выдвинуть оригинальную версию причин дрейфа материков.
Начало раскола Гондваны совпало с сильным оледенением и вымиранием ряда видов живых организмов. Такие катаклизмы обычно следуют после столкновений Земли с кометой или астероидом . Падение достаточно большого астероида должно оставить след как на поверхности Земли, так и в мантии. Подобный след может наблюдаться как аномальная “горячая точка”, вызывающая стабильный вулканизм на поверхности Земли. Такая точка недавно была обнаружена под Гавайскими островами. Английский журнал “Nature” в одном из летних номеров сообщил о наличии “горячего пятна” под Гавайями , дающему тепловой поток. Гавайское скопление магматических масс на 300°С выше температуры окружающего вещества. “Это самое горячее место в магме, которое известно науке - определил результат измерений сотрудник Международного геологического центра Стефан Соболев, - оно находится на глубине от 100 до 150 км, непосредственно под Гавайскими вулканами. Каждые 200 тыс. лет “горячее пятно” прожигает в плите выход, и лава образует сперва подводный вулкан, а затем остров. Старые вулканы, миновавшие “горячее пятно” и не получающие больше лавы, медленно разрушаются в океане.”
Справедливо может последовать вопрос: какая связь между Гавайскими островами и Гондваной, которая находилась с противоположной стороны земного шара? Суть выдвигаемой гипотезы как раз в том и состоит, что, по мнению автора, при столкновении достаточно большого астероида с Землёй, часть энергии взрыва выделяется в точке столкновения, а другая и весьма значительная часть в виде сейсмических колебаний проходит сквозь Земной шар и выделяется в области Земной коры и мантии, расположенной с диаметрально противоположной стороны от точки падения астероида. Таким образом, после падения астероида в Тихом океане, в районе расположения теперешних Гавайских островов, произошёл катастрофический взрыв, в результате которого в атмосферу поднялось огромное количество водяного пара и пыли, что послужило причиной наступления явления, называемого сейчас “ядерной зимой”, после которой произошло оледенение значительной части Гондваны и вымирание многих видов животных (аммониты и белемниты). В то же время мощная ударная волна уносит часть энергии в земные глубины. Сейсмические волны бывают двух видов: продольные и поперечные. Продольные волны беспрепятственно проходят сквозь жидкое Земное ядро, а поперечные огибают его и пересекаются между собой и с продольными волнами в области Земного шара, противоположном месту падения астероида, порождая сейсмический гидродинамический удар. В данном случае антиподальная зона находилась на территории Гондваны в южной части современного Африканского континента. Энергия взрыва, перекачанная в антиподальную зону Земли сейсмическими волнами частично расплавила в этой зоне мантию и послужила спусковым механизмом для освобождения накопившейся энергии Земных глубин. Через образовавшиеся “слабые места” в Земную кору стали поступать ультраосновные породы, увлекая с собой алмазы, золото и урансодержащие минералы.
Так образовались южноафриканские кимберлитовые трубки и сказочные золотоносные месторождения. Со временем первоначальный тепловой поток расширился в объёме, ослаб, а позже преобразовался в систему конвекционных потоков в мантии Земли, которые, выходя на поверхность, образовали в Земной коре систему рифтовых долин, которые рас-кололи Гондвану на Афроиндию и Патагонитиду, в состав которой входили Южная Америка, Антарктида и Австралия.
Следующий катаклизм случился 68 млн. лет назад, когда крупный астероид столкнулся с Землёй в районе полуострова Юкатан, который в то время находился восточнее острова Гаити. Последствиями этой катастрофы стали: 1) вымирание динозавров; 2)образование “горячего пятна”, которое породило гряду островов Гаити и Куба; 3)разогрев мантии Земли в антиподальной точке в западной части Индийского океана, где в то время находился Индийский субконтинент. Возникший конвекционный поток породил сначала Индийские и Танзанийские алмазы, а затем рифтовые долины Красного моря, Восточной Африки и Индийского океана. Последствием деятельности мощной рифтовой долины Индийского океана стало отделение Индийского субконтинента от Африки, а затем его интенсивный дрейф и столкновение с Азией. Именно эта катастрофа ознаменовала завершение мезозойской и наступление кайнозойской эры в геологической истории Земли.
Явным аналогом Гавайской вулканической аномалии является остров Исландия, расположенный в северной части Атлантического океана. Под этим большим островом по-видимому находится такой же резервуар горячей магмы, как и под Гавайскими островами.
Однако существенным отличием их является то, что остров Исландия находится как раз на серединно-океаническом хребте и поэтому земная кора под ним не такая подвижная, как под Гавайями. Поэтому после падения астероида в этом месте, которое произошло 35 млн. лет назад, возникшие вулканы за это время построили остров площадью 103 тыс.км.и высотой в среднем 500-700 м над уровнем моря. Гавайские же вулканы строят острова 150 млн. лет, но из-за их дрейфа и разрушения имеют площадь всего 16,7 тыс. км. Проецирование через центр Земли острова Исландия показывает вектор воздействия сейсмического гидродинамического удара упавшего астероида в направлении серединно-океанического хребта, расположенного между Австралией и Антарктидой. Именно в этом месте 35 млн. лет назад Австралия отделилась от Антарктиды. На основании открытых закономерностей можно предположить наличие в восточной Антарктиде больших запасов алмазов и золота.
Вопрос 6
Развитие представлений человечества о Солнце и планетах
С давних времён люди наблюдали за небом и пытались составить себе представление о том, что они на нём видели. Самые заметные объекты на небе - это, конечно же, Солнце и Луна. Звёзды и планеты выглядят всего лишь маленькими светящимися точками. Однако, наблюдая за изменением положения этих точек, древние наблюдатели обратили внимание на то, что в то время, как большая часть этих точек (т. е. звёзды) не меняют своего положения на небе относительно друг друга, участвуя лишь в круговом движении, которое вызвано вращением Земли вокруг своей оси, некоторые светящиеся точки перемещаются по небу весьма сложным образом. Так ещё в древности люди стали различать планеты и звёзды.
Астрономические наблюдения имели очень большое значение в древности. Именно на основе наблюдений за небом, изучения закономерностей движения Солнца и Луны люди смогли создать первые календари, научиться вести счёт времени и предсказывать различные природные явления. Из далёкой древности до наших времён дошли впечталяющие сооружения, которые построили древние для того, чтобы с их помощью опеределять точное положение светил.
Важным этапом в истории развития представлений о Солнечной системе стали достижения древнегреческой астрономии. Древние греки не только установили факт шарообразности Земли, вычислив даже её примерные размеры, но и занялись созданием теории планетного движения. Среди дрвенегреческих астрономов были как те, которые выступали за геоцентрическую модель мира, так и те, которые правильно полагали, что в центре Солнечной системы находится Солнце, а Земля и другие планеты вращаются вокруг Солнца. Наиболее значительным трудом, суммировавшим достижения древнегреческой астрономии, стал "Альмагест". Автором его был древнегреческий астроном Птолемей, который разработал собственную довольно сложную модель мира, которая, несмотря на то, что была геоцентрической, позволяла рассчитывать положение планет с большой точностью.
Теория Птолемея стала господствующей в представлениях человечества на многие века, вплоть до Эпохи Возрожденья, при этом геоцентрическая система мира поддерживалась и защищалась католической церковью, которая боролась со всеми, сомневающимися в её правильности. В 15 в. Европе начинается пробуждение науки, которое затронуло в том числе и астрономию. Коперник вновь выдвигает теорию, согласно которой Земля и остальные планеты вращаются вокруг Солнца. Эта теория натолкнулась на жёсткое противодействие католической церкви, которая обвиняла её сторонников в ереси, а одного из её видных последователей - Джордано Бруно инквизиция даже сожгла на костре. Однако, несмотря на все усилия, враги науки не могли остановить прогресс. В начале 17 в. Кеплер, опиравшийся на наблюдения Тихо Браге, установил законы движения планет. Он открыл, в частности, что планеты обращаются вокруг Солнца не по круговым, а по эллиптическим орбитам. Высочайшая точность, с которой теория Кеплера могла предсказывать движения планет, не оставляла сомнений в справедливости гелиоцентрической модели. Законы Кеплера, в свою очередь, стали одним из источников, которые привели Ньютона к созданию механики - первой научной теории Нового Времени, которая описывала закономерности движения тел. С созданием теории Ньютона законы движения планет получили чёткое научное обоснование.
С древних времён человечеству было известно 5 планет, видимых на небе невооружённым глазом. Это - Меркурий, Венера, Марс, Юпитер и Сатурн. О других планетах Солнечной системы и спутниках планет не было известно ничего, пока Галилео Галилей не изобрёл телескоп. Появление телескопа сразу привело к бурному росту астрономических открытий. Сам Галилей с помощью своего телескопа открыл горы на Луне, пятна на Солнце и четыре крупнейших спутника Юпитера - Ио, Ганнимед, Европу и Каллисто. Это произошло в 1610 году. На протяжении 17 в. были открыты ещё несколько крупных спутников, например, спутник Сатурна Титан. Первая новая планета - Уран - была случайно открыта в 1781 г. Уильямом Гершелем. В 1846 г. был открыт Нептун, причём уже не случайно, а на основании расчётов учёных, которые предсказали существование ещё одной планеты Солнечной системы на основании того влияния, которое она своей гравитацией оказывала на движение Урана. На протяжении 18, 19 и начала 20 в. с помощью всё более мощных наземных телескопов продолжали открывать спутники планет, в 19 в. были открыты, например, два спутника Марса - Фобос и Деймос, а кроме этого, в самом начале 19 в. было положено начало открытию множества малых планет - астероидов, которые, хотя и не были спутниками других планет и самостоятельно обращались вокруг Солнца, но были слишком малы, чтобы считать их настоящими планетами.
Новый старт астрономическим открытиям был дан началом космической эры.
Современный период исследований Солнечной системы
В 1957 г. СССР запустил первый спутник. И почти сразу космические аппараты были направлены для исследования других планет Солнечной системы. Долгие годы люди могли наблюдать за небесными телами лишь с поверхности Земли, но даже самые лучшие наземные телескопы не позволяли сделать каких-либо выводов о том, каковы условия на других планетах, как протекают на них природные процессы, есть ли на них жизнь и т. д. - узнать это стало возможным лишь с началом исследований космоса при помощи космических аппаратов.
Первые аппараты были направлены к Луне. В 1959 г. Луна-2 впервые достигла поверхности Луны, а Луна-3 сфотографировала обратную сторону Луны, которую до тех пор никто не видел. Затем были направлены аппараты к Венере и Марсу. Американские "Маринеры" получили фотографии этих планет с близкого расстояния, советская станция "Венера-7" впервые получила достоверные данные о климате Венеры, а "Венера-9" в 1975 г. стала первым космическим аппаратом, который смог совершить посадку на поверхность другой планеты и передать на Землю изображение её поверхности.
Хотя после запуска первого спутника многие надеялись на начало быстрого освоения других планет, до сих пор единственной попыткой людей добраться до поверхности другого небесного тела является программа "Апполон", осуществлённая на рубеже 70-х, в ходе которой американцы несколько раз слетали к Луне и высадились на её поверхность. СССР использовал автоматические станции для исследования поверхности Луны - они доставили с Луны на Землю пробы грунта, а "Луноход" стал первым аппаратом, способным передвигаться по поверхности, за время своей миссии он смог исследовать довольно обширный участок лунной поверхности. В конце 90-х маленькие аппараты, подобные "луноходу", были отправлены американцами на Марс и использовались для исследования его поверхности (подробнее о луноходах и марсоходах).
Существенный вклад в расширение знаний о дальних планетах Солнечной системы принесли миссии космических аппаратов "Пионер-10" и "Пионер-11", и, особенно, "Вояджеров". Удачно пролетев вблизи всех больших планет - Юпитера, Сатурна, Урана и Нептуна, они смогли передать на Землю фотографии крупным планом этих планет и некоторых их спутников, а также открыли множество новых небольших спутников этих планет.
Вопрос 7
Проблема происхождения жизни актуальна в современном естествознании. По ней ведутся интенсивные исследования в различных научных центрах нашей страны и за рубежом. Огромное количество разрозненных эмпирических данных требует новых подходов, новых принципов обобщения. Проблема происхождения жизни является комплексной, и ее решение становится не под силу одному человеку. В процессе подготовки и написания этой книги автор хорошо усвоил слова выдающегося английского физика и натуралиста Дж. Бернала (1901—1971) о том, что любое решение проблемы происхождения жизни, предложенное отдельным человеком, каким бы образованным и талантливым он ни был, неизбежно будет пристрастным и уязвимым для критики, потому что оно будет основываться на идеях или предполагаемых фактах, относящихся частично к тем областям науки, с которыми он непосредственно незнаком.
Несмотря на то что над проблемой происхождения жизни работают преимущественно биохимики и специалисты в области молекулярной биологии, решение ее не может быть достигнуто без участия исследователей, которые заняты изучением среды возникновения и развития жизни, т. е. геологов, палеонтологов, геохимиков и др. Крайне необходимым является также привлечение данных современной космохимии.
В 1976 г. автор данной книги писал; ''Основные предпосылки появления жизни на Земле были созданы в конце остывания первичной газовой туманности. На последних этапах остывания в результате каталитических реакций биофильных элементов образовались многочисленные органические соединения, обусловившие появление генетического кода и саморазвивающихся молекулярных систем.
Возникновение Земли и жизни представляло собой единый взаимосвязанный процесс — результат химической эволюции вещества Солнечной системы''.
Успехи науки, появление новых эмпирических данных в геохимии, космохимии, экспериментальной биохимии виолне подтверждают это положение. Развитию Жизни на Земле посвящено много книг, в том числе и научно-популярных. Тем не менее последние открытия в области микропалеонтологии и геохимии изотопов позволяют заново описать увлекательную историю развития жизни на Земле. Это и воодушевило автора к написанию настоящей книги, в которой с новых позиций рассматривается проблема происхождения жизни,
Вопрос 9
ДИФФЕРЕНЦИАЦИЯ И ИНТЕГРАЦИЯ НАУК
Развитие науки характеризуется диалектическим взаимодействием двух противоположных процессов - дифференциацией (выделением новых научных дисциплин) и интеграцией (синтезом знания, объединением ряда наук - чаще всего в дисциплины, находящиеся на их "стыке"). На одних этапах развития науки преобладает дифференциация (особенно в период возникновения науки в целом и отдельных наук), на других - их интеграция, это характерно для современной науки.
Процесс дифференциации, отпочкования наук, превращения отдельных "зачатков" научных знаний в самостоятельные (частные) науки и внутринаучное "разветвление" последних в научные дисциплины начался уже на рубеже XVI и XVII вв. В этот период единое ранее знание (философия) раздваивается на два главных "ствола" - собственно философию и науку как целостную систему знания, духовное образование и социальный институт. В свою очередь философия начинает расчленяться на ряд философских наук (онтологию, гносеологию, этику, диалектику и т.п.), наука как целое разделяется на отдельные частные науки (а внутри них - на научные дисциплины), среди которых лидером становится классическая (ньютоновская) механика, тесно связанная с математикой с момента своего возникновения.
В последующий период процесс дифференциации наук продолжал усиливаться. Он вызывался как потребностями общественного производства, так и внутренними потребностями развития научного знания. Следствием этого процесса явилось возникновение и бурное развитие пограничных, "стыковых" наук.
Как только биологи углубились в изучение живого настолько, что поняли огромное значение химических процессов и превращений в клетках, тканях, организмах, началось усиленное изучение этих процессов, накопление результатов, что привело к возникновению новой науки - биохимии. Точно так же необходимость изучения физических процессов в живом организме привела к взаимодействию биологии и физики и возникновению пограничной науки - биофизики. Аналогичным путем возникли физическая химия, химическая физика, геохимия и т.д. Возникают и такие научные дисциплины, которые находятся на стыке трех наук, как, например, биогеохимия. Основоположник биогеохимии В. И. Вернадский считал ее сложной научной дисциплиной, поскольку она тесно и целиком связана с одной определенной земной оболочкой - биосферой и с ее биологическими процессами в их химическом (атомном) выявлении. "Область ведения" биогеохимии определяется как геологическими проявлениями жизни, так и биохимическими процессами внутри организмов, живого населения планеты.
Дифференциация наук является закономерным следствием быстрого увеличения и усложнения знаний. Она неизбежно ведет к специализации и разделению научного труда. Последние имеют как позитивные стороны (возможность углубленного изучения явлений, повышение производительности труда ученых), так и отрицательные (особенно "потеря связи целого", сужение кругозора - иногда до "профессионального кретинизма"). Касаясь этой стороны проблемы, А. Эйнштейн отмечал, что в ходе развития науки "деятельность отдельных исследователей неизбежно стягивается ко все более ограниченному участку всеобщего знания. Эта специализация, что еще хуже, приводит к тому, что единое общее понимание всей науки, без чего истинная глубина исследовательского духа обязательно уменьшается, все с большим