Краткий обзор истории развития геологических знаний
Геоэкология подразделяется на общую, прикладную и региональную.
Общая геоэкология изучает общеземные, глобальные процессы и явления. В ее состав входят экогеоморфология, экология недр, экология атмосферы, гидроэкология и др.
Процессы и явления, связанные с формированием и изменением геоэкосистем в определенных сферах хозяйственной деятельности изучает прикладная геоэкология (агроэкология, урбоэкология, лесохозяйственная, рекреационная, водохозяйственная экология и др.).
Региональная геоэкология изучает процессы и явления, происходящие на конкретных территориях, используемых в хозяйственной деятельности (геоэкология административно-территориальных образований, геоэкология природных зон, геоэкология гидрогеологических и речных бассейнов и др.).
Прикладные геоэкологические исследования выполняются для экологического обоснования хозяйственной деятельности при разработке инвестиционной документации (программы отраслевого и территориального развития, программы комплексного использования и охраны природных ресурсов, схемы инженерной защиты территории, схемы районных планировок), градостроительной документации (разработка генпланов населенных пунктов, проектов детальной планировки), проектной документации (разработка проектов и рабочей документации для строительства зданий и инженерных сооружений, проектов землепользования) и для организации экологического мониторинга.
Вопрос 13
Биосфера (от био… и сфера), область активной жизни, охватывающая нижнюю часть атмосферы, гидросферу и верхнюю часть литосферы. В биосфере живые организмы (живое вещество) и среда их обитания органически связаны и взаимодействуют друг с другом, образуя целостную динамическую систему. Термин “Биосфера" введен в 1875 году Зюссом. Учение о биосфере, как об активной оболочке земли, в которой совокупная деятельность живых организмов (в том числе человека) проявляется как геохимический фактор планетарного масштаба и значения, создано В.И. Вернадским в 1926 году.
К биосфере относится все, что живет, дышит, растет и питается (кроме человека, который выделился из животного мира). Поэтому рассмотрим проблемы, относящиеся непосредственно к миру дикой природы.
Противостояние двух теорий
В науке о Земле сторонники теории тектоники материковых плит (мобилизма) уже давно одержали убедительную победу над приверженцами теории фиксизма. Сейчас даже школьники знают, что 150 миллионов лет назад произошел распад праматерика Гондвана на Африку,Южную Америку, Антарктиду, Австралию и Индию. Их движение со скоростью 3-5 см в год и продолжается по настоящее время, порождая землетрясения и извержения вулканов. Однако теория мобилизма не объясняет первопричины возникновения дрейфа континентов.
Системный анализ геофизических процессов, происходивших на протяжении длительного времени, позволяет выдвинуть оригинальную версию причин дрейфа материков.
Начало раскола Гондваны совпало с сильным оледенением и вымиранием ряда видов живых организмов. Такие катаклизмы обычно следуют после столкновений Земли с кометой или астероидом . Падение достаточно большого астероида должно оставить след как на поверхности Земли, так и в мантии. Подобный след может наблюдаться как аномальная “горячая точка”, вызывающая стабильный вулканизм на поверхности Земли. Такая точка недавно была обнаружена под Гавайскими островами. Английский журнал “Nature” в одном из летних номеров сообщил о наличии “горячего пятна” под Гавайями , дающему тепловой поток. Гавайское скопление магматических масс на 300°С выше температуры окружающего вещества. “Это самое горячее место в магме, которое известно науке - определил результат измерений сотрудник Международного геологического центра Стефан Соболев, - оно находится на глубине от 100 до 150 км, непосредственно под Гавайскими вулканами. Каждые 200 тыс. лет “горячее пятно” прожигает в плите выход, и лава образует сперва подводный вулкан, а затем остров. Старые вулканы, миновавшие “горячее пятно” и не получающие больше лавы, медленно разрушаются в океане.”
Справедливо может последовать вопрос: какая связь между Гавайскими островами и Гондваной, которая находилась с противоположной стороны земного шара? Суть выдвигаемой гипотезы как раз в том и состоит, что, по мнению автора, при столкновении достаточно большого астероида с Землёй, часть энергии взрыва выделяется в точке столкновения, а другая и весьма значительная часть в виде сейсмических колебаний проходит сквозь Земной шар и выделяется в области Земной коры и мантии, расположенной с диаметрально противоположной стороны от точки падения астероида. Таким образом, после падения астероида в Тихом океане, в районе расположения теперешних Гавайских островов, произошёл катастрофический взрыв, в результате которого в атмосферу поднялось огромное количество водяного пара и пыли, что послужило причиной наступления явления, называемого сейчас “ядерной зимой”, после которой произошло оледенение значительной части Гондваны и вымирание многих видов животных (аммониты и белемниты). В то же время мощная ударная волна уносит часть энергии в земные глубины. Сейсмические волны бывают двух видов: продольные и поперечные. Продольные волны беспрепятственно проходят сквозь жидкое Земное ядро, а поперечные огибают его и пересекаются между собой и с продольными волнами в области Земного шара, противоположном месту падения астероида, порождая сейсмический гидродинамический удар. В данном случае антиподальная зона находилась на территории Гондваны в южной части современного Африканского континента. Энергия взрыва, перекачанная в антиподальную зону Земли сейсмическими волнами частично расплавила в этой зоне мантию и послужила спусковым механизмом для освобождения накопившейся энергии Земных глубин. Через образовавшиеся “слабые места” в Земную кору стали поступать ультраосновные породы, увлекая с собой алмазы, золото и урансодержащие минералы.
Так образовались южноафриканские кимберлитовые трубки и сказочные золотоносные месторождения. Со временем первоначальный тепловой поток расширился в объёме, ослаб, а позже преобразовался в систему конвекционных потоков в мантии Земли, которые, выходя на поверхность, образовали в Земной коре систему рифтовых долин, которые рас-кололи Гондвану на Афроиндию и Патагонитиду, в состав которой входили Южная Америка, Антарктида и Австралия.
Следующий катаклизм случился 68 млн. лет назад, когда крупный астероид столкнулся с Землёй в районе полуострова Юкатан, который в то время находился восточнее острова Гаити. Последствиями этой катастрофы стали: 1) вымирание динозавров; 2)образование “горячего пятна”, которое породило гряду островов Гаити и Куба; 3)разогрев мантии Земли в антиподальной точке в западной части Индийского океана, где в то время находился Индийский субконтинент. Возникший конвекционный поток породил сначала Индийские и Танзанийские алмазы, а затем рифтовые долины Красного моря, Восточной Африки и Индийского океана. Последствием деятельности мощной рифтовой долины Индийского океана стало отделение Индийского субконтинента от Африки, а затем его интенсивный дрейф и столкновение с Азией. Именно эта катастрофа ознаменовала завершение мезозойской и наступление кайнозойской эры в геологической истории Земли.
Явным аналогом Гавайской вулканической аномалии является остров Исландия, расположенный в северной части Атлантического океана. Под этим большим островом по-видимому находится такой же резервуар горячей магмы, как и под Гавайскими островами.
Однако существенным отличием их является то, что остров Исландия находится как раз на серединно-океаническом хребте и поэтому земная кора под ним не такая подвижная, как под Гавайями. Поэтому после падения астероида в этом месте, которое произошло 35 млн. лет назад, возникшие вулканы за это время построили остров площадью 103 тыс.км.и высотой в среднем 500-700 м над уровнем моря. Гавайские же вулканы строят острова 150 млн. лет, но из-за их дрейфа и разрушения имеют площадь всего 16,7 тыс. км. Проецирование через центр Земли острова Исландия показывает вектор воздействия сейсмического гидродинамического удара упавшего астероида в направлении серединно-океанического хребта, расположенного между Австралией и Антарктидой. Именно в этом месте 35 млн. лет назад Австралия отделилась от Антарктиды. На основании открытых закономерностей можно предположить наличие в восточной Антарктиде больших запасов алмазов и золота.
Вопрос 6
Развитие представлений человечества о Солнце и планетах
С давних времён люди наблюдали за небом и пытались составить себе представление о том, что они на нём видели. Самые заметные объекты на небе - это, конечно же, Солнце и Луна. Звёзды и планеты выглядят всего лишь маленькими светящимися точками. Однако, наблюдая за изменением положения этих точек, древние наблюдатели обратили внимание на то, что в то время, как большая часть этих точек (т. е. звёзды) не меняют своего положения на небе относительно друг друга, участвуя лишь в круговом движении, которое вызвано вращением Земли вокруг своей оси, некоторые светящиеся точки перемещаются по небу весьма сложным образом. Так ещё в древности люди стали различать планеты и звёзды.
Астрономические наблюдения имели очень большое значение в древности. Именно на основе наблюдений за небом, изучения закономерностей движения Солнца и Луны люди смогли создать первые календари, научиться вести счёт времени и предсказывать различные природные явления. Из далёкой древности до наших времён дошли впечталяющие сооружения, которые построили древние для того, чтобы с их помощью опеределять точное положение светил.
Важным этапом в истории развития представлений о Солнечной системе стали достижения древнегреческой астрономии. Древние греки не только установили факт шарообразности Земли, вычислив даже её примерные размеры, но и занялись созданием теории планетного движения. Среди дрвенегреческих астрономов были как те, которые выступали за геоцентрическую модель мира, так и те, которые правильно полагали, что в центре Солнечной системы находится Солнце, а Земля и другие планеты вращаются вокруг Солнца. Наиболее значительным трудом, суммировавшим достижения древнегреческой астрономии, стал "Альмагест". Автором его был древнегреческий астроном Птолемей, который разработал собственную довольно сложную модель мира, которая, несмотря на то, что была геоцентрической, позволяла рассчитывать положение планет с большой точностью.
Теория Птолемея стала господствующей в представлениях человечества на многие века, вплоть до Эпохи Возрожденья, при этом геоцентрическая система мира поддерживалась и защищалась католической церковью, которая боролась со всеми, сомневающимися в её правильности. В 15 в. Европе начинается пробуждение науки, которое затронуло в том числе и астрономию. Коперник вновь выдвигает теорию, согласно которой Земля и остальные планеты вращаются вокруг Солнца. Эта теория натолкнулась на жёсткое противодействие католической церкви, которая обвиняла её сторонников в ереси, а одного из её видных последователей - Джордано Бруно инквизиция даже сожгла на костре. Однако, несмотря на все усилия, враги науки не могли остановить прогресс. В начале 17 в. Кеплер, опиравшийся на наблюдения Тихо Браге, установил законы движения планет. Он открыл, в частности, что планеты обращаются вокруг Солнца не по круговым, а по эллиптическим орбитам. Высочайшая точность, с которой теория Кеплера могла предсказывать движения планет, не оставляла сомнений в справедливости гелиоцентрической модели. Законы Кеплера, в свою очередь, стали одним из источников, которые привели Ньютона к созданию механики - первой научной теории Нового Времени, которая описывала закономерности движения тел. С созданием теории Ньютона законы движения планет получили чёткое научное обоснование.
С древних времён человечеству было известно 5 планет, видимых на небе невооружённым глазом. Это - Меркурий, Венера, Марс, Юпитер и Сатурн. О других планетах Солнечной системы и спутниках планет не было известно ничего, пока Галилео Галилей не изобрёл телескоп. Появление телескопа сразу привело к бурному росту астрономических открытий. Сам Галилей с помощью своего телескопа открыл горы на Луне, пятна на Солнце и четыре крупнейших спутника Юпитера - Ио, Ганнимед, Европу и Каллисто. Это произошло в 1610 году. На протяжении 17 в. были открыты ещё несколько крупных спутников, например, спутник Сатурна Титан. Первая новая планета - Уран - была случайно открыта в 1781 г. Уильямом Гершелем. В 1846 г. был открыт Нептун, причём уже не случайно, а на основании расчётов учёных, которые предсказали существование ещё одной планеты Солнечной системы на основании того влияния, которое она своей гравитацией оказывала на движение Урана. На протяжении 18, 19 и начала 20 в. с помощью всё более мощных наземных телескопов продолжали открывать спутники планет, в 19 в. были открыты, например, два спутника Марса - Фобос и Деймос, а кроме этого, в самом начале 19 в. было положено начало открытию множества малых планет - астероидов, которые, хотя и не были спутниками других планет и самостоятельно обращались вокруг Солнца, но были слишком малы, чтобы считать их настоящими планетами.
Новый старт астрономическим открытиям был дан началом космической эры.
Современный период исследований Солнечной системы
В 1957 г. СССР запустил первый спутник. И почти сразу космические аппараты были направлены для исследования других планет Солнечной системы. Долгие годы люди могли наблюдать за небесными телами лишь с поверхности Земли, но даже самые лучшие наземные телескопы не позволяли сделать каких-либо выводов о том, каковы условия на других планетах, как протекают на них природные процессы, есть ли на них жизнь и т. д. - узнать это стало возможным лишь с началом исследований космоса при помощи космических аппаратов.
Первые аппараты были направлены к Луне. В 1959 г. Луна-2 впервые достигла поверхности Луны, а Луна-3 сфотографировала обратную сторону Луны, которую до тех пор никто не видел. Затем были направлены аппараты к Венере и Марсу. Американские "Маринеры" получили фотографии этих планет с близкого расстояния, советская станция "Венера-7" впервые получила достоверные данные о климате Венеры, а "Венера-9" в 1975 г. стала первым космическим аппаратом, который смог совершить посадку на поверхность другой планеты и передать на Землю изображение её поверхности.
Хотя после запуска первого спутника многие надеялись на начало быстрого освоения других планет, до сих пор единственной попыткой людей добраться до поверхности другого небесного тела является программа "Апполон", осуществлённая на рубеже 70-х, в ходе которой американцы несколько раз слетали к Луне и высадились на её поверхность. СССР использовал автоматические станции для исследования поверхности Луны - они доставили с Луны на Землю пробы грунта, а "Луноход" стал первым аппаратом, способным передвигаться по поверхности, за время своей миссии он смог исследовать довольно обширный участок лунной поверхности. В конце 90-х маленькие аппараты, подобные "луноходу", были отправлены американцами на Марс и использовались для исследования его поверхности (подробнее о луноходах и марсоходах).
Существенный вклад в расширение знаний о дальних планетах Солнечной системы принесли миссии космических аппаратов "Пионер-10" и "Пионер-11", и, особенно, "Вояджеров". Удачно пролетев вблизи всех больших планет - Юпитера, Сатурна, Урана и Нептуна, они смогли передать на Землю фотографии крупным планом этих планет и некоторых их спутников, а также открыли множество новых небольших спутников этих планет.
Вопрос 7
Проблема происхождения жизни актуальна в современном естествознании. По ней ведутся интенсивные исследования в различных научных центрах нашей страны и за рубежом. Огромное количество разрозненных эмпирических данных требует новых подходов, новых принципов обобщения. Проблема происхождения жизни является комплексной, и ее решение становится не под силу одному человеку. В процессе подготовки и написания этой книги автор хорошо усвоил слова выдающегося английского физика и натуралиста Дж. Бернала (1901—1971) о том, что любое решение проблемы происхождения жизни, предложенное отдельным человеком, каким бы образованным и талантливым он ни был, неизбежно будет пристрастным и уязвимым для критики, потому что оно будет основываться на идеях или предполагаемых фактах, относящихся частично к тем областям науки, с которыми он непосредственно незнаком.
Несмотря на то что над проблемой происхождения жизни работают преимущественно биохимики и специалисты в области молекулярной биологии, решение ее не может быть достигнуто без участия исследователей, которые заняты изучением среды возникновения и развития жизни, т. е. геологов, палеонтологов, геохимиков и др. Крайне необходимым является также привлечение данных современной космохимии.
В 1976 г. автор данной книги писал; ''Основные предпосылки появления жизни на Земле были созданы в конце остывания первичной газовой туманности. На последних этапах остывания в результате каталитических реакций биофильных элементов образовались многочисленные органические соединения, обусловившие появление генетического кода и саморазвивающихся молекулярных систем.
Возникновение Земли и жизни представляло собой единый взаимосвязанный процесс — результат химической эволюции вещества Солнечной системы''.
Успехи науки, появление новых эмпирических данных в геохимии, космохимии, экспериментальной биохимии виолне подтверждают это положение. Развитию Жизни на Земле посвящено много книг, в том числе и научно-популярных. Тем не менее последние открытия в области микропалеонтологии и геохимии изотопов позволяют заново описать увлекательную историю развития жизни на Земле. Это и воодушевило автора к написанию настоящей книги, в которой с новых позиций рассматривается проблема происхождения жизни,
Вопрос 9
ДИФФЕРЕНЦИАЦИЯ И ИНТЕГРАЦИЯ НАУК
Развитие науки характеризуется диалектическим взаимодействием двух противоположных процессов - дифференциацией (выделением новых научных дисциплин) и интеграцией (синтезом знания, объединением ряда наук - чаще всего в дисциплины, находящиеся на их "стыке"). На одних этапах развития науки преобладает дифференциация (особенно в период возникновения науки в целом и отдельных наук), на других - их интеграция, это характерно для современной науки.
Процесс дифференциации, отпочкования наук, превращения отдельных "зачатков" научных знаний в самостоятельные (частные) науки и внутринаучное "разветвление" последних в научные дисциплины начался уже на рубеже XVI и XVII вв. В этот период единое ранее знание (философия) раздваивается на два главных "ствола" - собственно философию и науку как целостную систему знания, духовное образование и социальный институт. В свою очередь философия начинает расчленяться на ряд философских наук (онтологию, гносеологию, этику, диалектику и т.п.), наука как целое разделяется на отдельные частные науки (а внутри них - на научные дисциплины), среди которых лидером становится классическая (ньютоновская) механика, тесно связанная с математикой с момента своего возникновения.
В последующий период процесс дифференциации наук продолжал усиливаться. Он вызывался как потребностями общественного производства, так и внутренними потребностями развития научного знания. Следствием этого процесса явилось возникновение и бурное развитие пограничных, "стыковых" наук.
Как только биологи углубились в изучение живого настолько, что поняли огромное значение химических процессов и превращений в клетках, тканях, организмах, началось усиленное изучение этих процессов, накопление результатов, что привело к возникновению новой науки - биохимии. Точно так же необходимость изучения физических процессов в живом организме привела к взаимодействию биологии и физики и возникновению пограничной науки - биофизики. Аналогичным путем возникли физическая химия, химическая физика, геохимия и т.д. Возникают и такие научные дисциплины, которые находятся на стыке трех наук, как, например, биогеохимия. Основоположник биогеохимии В. И. Вернадский считал ее сложной научной дисциплиной, поскольку она тесно и целиком связана с одной определенной земной оболочкой - биосферой и с ее биологическими процессами в их химическом (атомном) выявлении. "Область ведения" биогеохимии определяется как геологическими проявлениями жизни, так и биохимическими процессами внутри организмов, живого населения планеты.
Дифференциация наук является закономерным следствием быстрого увеличения и усложнения знаний. Она неизбежно ведет к специализации и разделению научного труда. Последние имеют как позитивные стороны (возможность углубленного изучения явлений, повышение производительности труда ученых), так и отрицательные (особенно "потеря связи целого", сужение кругозора - иногда до "профессионального кретинизма"). Касаясь этой стороны проблемы, А. Эйнштейн отмечал, что в ходе развития науки "деятельность отдельных исследователей неизбежно стягивается ко все более ограниченному участку всеобщего знания. Эта специализация, что еще хуже, приводит к тому, что единое общее понимание всей науки, без чего истинная глубина исследовательского духа обязательно уменьшается, все с большим трудом поспевает за развитием науки...; она угрожает отнять у исследователя широкую перспективу, принижая его до уровня ремесленника" [1].
Одновременно с процессом дифференциации происходит и процесс интеграции - объединения, взаимопроникновения, синтеза наук и научных дисциплин, объединение их (и их методов) в единое целое, стирание граней между ними. Это особенно характерно для современной науки, где сегодня бурно развиваются такие синтетические, общенаучные области научного знания как кибернетика, синергетика и др., строятся такие интегративные картины мира, как естественнонаучная, общенаучная, философская (ибо философия также выполняет интегративную функцию в научном познании).
Тенденцию "смыкания наук", ставшей закономерностью современного этапа их развития и проявлением парадигмы целостности, четко уловил В. И. Вернадский. Большим новым явлением научной мысли XX в. он считал, что "впервые сливаются в единое целое все до сих пор шедшие в малой зависимости друг от друга, а иногда вполне независимо, течения духовного творчества человека. Перелом научного понимания Космоса совпадает, таким образом, с одновременно идущим глубочайшим изменением наук о человеке. С одной стороны, эти науки смыкаются с науками о природе, с другой - их объект совершенно меняется" [2]. Интеграция наук убедительно и все с большей силой доказывает единство природы. Она потому и возможна, что объективно существует такое единство.
Таким образом, развитие науки представляет собой диалектический процесс, в котором дифференциация сопровождается интеграцией, происходит взаимопроникновение и объединение в единое целое самых различных направлений научного познания мира, взаимодействие разнообразных методов и идей.
В современной науке получает все большее распространение объединение наук для разрешения крупных задач и глобальных проблем, выдвигаемых практическими потребностями. Так, например, сложная проблема исследования Космоса потребовала объединения усилий ученых самых различных специальностей. Решение очень актуальной сегодня экологической проблемы невозможно без тесного взаимодействия естественных и гуманитарных наук, без синтеза вырабатываемых ими идей и методов.
Вопрос 11
БИОГЕОХИМИЧЕСКИЕ ПРИНЦИПЫ ВЕРНАДСКОГО – Vernadsky biogeochemical principles – В. И. Вернадский выдвинул (1940) следующие принципы геохимической деятельности живых организмов в биосфере: 1) биогенная миграция атомов химических элементов в биосфере всегда стремится к максимальному своему проявлению; 2) эволюция видов в ходе геологического времени, приводящая к созданию устойчивых в биосфере форм жизни, идет в направлении, увеличивающем биогенную миграцию атомов биосферы.
Краткий обзор истории развития геологических знаний
Уже на первых этапах развития человеческого общества древние люди начали использовать горные породы и минералы, сначала - в каменном веке - для изготовления примитивных каменных орудий, позднее - в течение бронзового и железного веков - для выплавки Au, Ag, Cu, Sn, Fe. Использование природных богатств сопровождалось и первыми попытками их изучения, о которых упоминается в древнейших клинописных памятниках Месопотамии, а также Египта (III-II тыс. до н.э.). В Китае сохранились рукописи VII-IV веков до н.э., в которых даны первые описания минералов и горных пород и приводятся сведения об их твердости, цвете, блеске, прозрачности. С другой стороны, издавна привлекали и поражали людей различные геологические явления, особенно землетрясения и извержения вулканов. Естественно, ученые уже в древности стремились к познанию строения Земли. В эпоху расцвета Древней Греции многие философы и ученые (Фалес, Гераклит, Аристотель, Анаксимандр и др.) высказывали различные гипотезы о происхождении и строении Земли, о преобразованиях земной поверхности, о различных геологических явлениях.
Интересные высказывания о многих геологических процессах оставил греческий философ Аристотель (384-322 гг. до н.э.). Вслед за Гераклитом он признавал, что мир существует вечно, но на поверхности Земли непрерывно происходят различные изменения, обусловленные периодическими затоплениями суши морем. Причину этого Аристотель объяснял циклическими колебаниями климата. В средние века геологическая наука, как, впрочем, и все науки, развивалась слабо. В эту эпоху безраздельно господствовала церковь со своими догмами о сотворении мира и его неизменности, преследовавшая все иные воззрения на происхождение и развитие Земли. В эти мрачные времена наука успешнее всего развивалась в Азии, на арабском Востоке. Например, в Средней Азии в связи с необходимостью добычи металлов, в эпоху феодализма довольно высокого развития достигла минералогия. В этом отношении нельзя не упомянуть таджикского врача и философа Абу Али ибн-Сина (Авиценна, 980-1037) и ученого из Хорезма Абу Рейхан аль-Бируни (973-1048), в трактатах которых подробно описаны минералы, известные в то время, а также затрагиваются общегеологические вопросы.
С началом эпохи Возрождения резко усилился интерес к научному познанию нашей планеты. Среди ученых XV-XVII веков, занимавшихся вопросами геологии, следует отметить Леонардо да Винчи, Георга Бауэра (Агрикола) и др. В их сочинениях резкой критике были подвергнуты религиозные воззрения на природу окаменелостей, встречаемых в земных пластах, которые считали в средние века "игрой природы", "порождением звезд". Леонардо да Винчи (1452-1519) правильно понимал природу окаменелостей как остатков некогда живших в море разнообразных животных, высказывал мысль о постепенном и длительном развитии Земли и многократной смене физико-географических условий на ее поверхности.
Немецкий врач, металлург и минералог Георг Бауэр(Агрикола, 1494-1555) оставил интересные наблюдения над рудными жилами и труды по технике горного дела.
Крупным научным достижением эпохи Возрождения было открытие польского астронома Николая Коперника(1473-1543), доказавшего гелиоцентрическое строение Солнечной системы. Он в своем труде "Об обращении небесных сфер" доказал вращение Земли вокруг своей оси и вокруг Солнца.
В XVIII веке немало было ученых, пытавшихся примирить достижения науки с религиозными догмами. Широко, например, были распространены идеи сторонников дилювиальной гипотезы (лат. diluvium - потоп, наводнение), рассматривавшей окаменелости и рельеф земной поверхности как остатки всемирного потопа. Подобные же стремления мы находим у великого математика и философа Г.В.Лейбница (1646-1716), который в своем геологическом труде укладывал образование Земли в шесть библейских дней.
Основатель школы нептунистов (Нептун - римский бог моря) профессор Фрайбергской гоорной академии в Саксонии А.Г.Вернер(1750-1817) считал, что Землю некогда полностью покрывал Мировой океан. Из его вод последовательно отлагались различные виды пород, в том числе и так называемые "первичные породы" (гранит, сиенит, гнейсы). Это учение сыграно положительную роль в изучении осадочных пород и условий осадконакопления. В остальном же оно служило тормозом для развития геологической науки, так как полностью отрицало значение внутренних сил в развитии Земли.
Более прогрессивным, хотя также односторонним, было учение плутонистов (Плутон - греческий бог подземного царства), возникшее в конце XVIII века. Выразителем идей плутонистов был шотландский геолог Дж. Геттон(1726-1797). В своем труде "Теория Земли" он признавал вертикальные движения земной коры, причину которых видел в "подземном жаре" Земли. Этим же "жаром" он объяснял существование вулканов, происхождение жил, образование магматических пород. Недостатком этой концепции было игнорирование осадочных образований.
Но задолго до Геттона подобные же мысли о влиянии "подземного жара" на развитие земной поверхности высказывал гениальный русский ученый Михаил Васильевич Ломоносов (1711-1765). В замечательном трактате "О слоях земных" (1763) он говорит об изменчивости природы, о ее развитии и критикует тех, кто в разнообразии природных явлений видел божественное начало. В его работе рассматриваются самые различные вопросы геологии: причины образования гор и вулканов, происхождение слоистых горных пород, связанное с осаждением из водных бассейнов, происхождение рудных жил, угля, нефти и др. Кроме подземного жара М.В.Ломоносов признавал влияние на формирование земной поверхности и внешних факторов (ветра, рек, волн). Силы, меняющие лик Земли, он разделял на внутренние и внешние. Признанием синтеза внешних и внутренних сил в их влиянии на развитие Земли М.В.Ломоносов намного опередил свою эпоху, в течение которой на Западе происходила борьба между нептунистами и плутонистами.
Весьма прогрессивным у Ломоносова является часто применявшийся им метод объяснения некоторых явлений геологического прошлого путем сравнения их с современными геологическими процессами, в котором можно видеть зачатки чрезвычайно плодотворного для геологии метода актуализма.
Крупный щаг в развитии геологии был сделан в начале XIX века английским землемером Вильямом Смитом (1769-1839), обратившим внимание при прокладке каналов на различие в органических остатках, встреченных в разных пластах. В.Смит впервые установил возможность определения возраста, а значит и последовательности отложения пластов на основании заключенных в них ископаемых. Он первый заложил основы расчленения и корреляции отложений по палеонтологическим остаткам.
В первой половине XIX века повсеместно начались тщательные и кропотливые работы по систематическому изучению остатков вымерших организмов. Для более дробного расчленения осадочных толщ в целях классификации и выработки общей для всей Земли геохронологической шкалы с 1822 по 1841 гг. были установлены основные подразделения осадочных образований, вошедшие впоследствии в геохронологическую шкалу земной коры.
Работы В.Смита развил и продолжил французский ученый Жорж Кювье(1769-1832), который признан основоположником новой науки палеонтологии. Палеонтология оказывает огромное влияние на последующее развитие исторической геологии. Будучи сторонником теории неизменяемости видов, Ж.Кювье объяснял различия в составе комплексов ископаемых, встреченных в различных пластах, всеобщим вымиранием организмов в результате внезапных геологических катастроф, после чего появлялись новые формы. Эта теория, получившая название катастрофизма, поддерживалась многими видными геологами, объяснявшими все изменения на поверхности Земли катастрофическими событиями. Катастрофизм легко уживался с религией и был по существу реакционным идеалистическим учением. Решительный удар по катастрофизму был нанесен английским геологом Чарльзом Ляйелем(1797-1875). В книге "Основы геологии" (1833) Ляйель доказал, что изменения земной поверхности могут происходить в результате деятельности самых обычных геологических факторов (ветра, дождя, морского прибоя, льда), без всяких катастрофических явлений. При колосальной длительности геологического времени эти факторы могут произвести огромные изменения на земной поверхности. Ф.Энгельс считал, что Ч.Ляйель "внес здравый смысл в геологию, заменив внезапные, вызванные капризом творца революции постепенным действием медленного преобразования Земли" (там же).
Эволюционные идеи окончательно упрочились в геологии с появлением в 1859 году гениального труда Чарльза Дарвина (1809-1862) "Происхождение видов". Признание эволюционного развития органического мира повысило интерес к изучению палеонтологических остатков, представляющих собой богатый материал для подтверждения дарвиновской теории эволюции.
Палеонтология из чисто описательной науки, какой она была в первой половине XIX века, превратилась в науку, вскрывающую родственные связи между ранее существовавшими организмами и основные закономерности их развития. В 70-х годах XIX века появились блестящие работы русского ученого В.О.Ковалевского(1842-1883) - основоположника эволюционного направления в палеонтологии. Он не только установил связи между отдельными видами организмов в процессе их развития (на примере позвоночных), но и показал причины, вызывающие изменения во внешнем облике животных, в частности, роль среды.
Успехи палеонтологии способствовали созданию стройной картины развития органического мира Земли и восстановлению палеогеографических условий прошлых эпох. Все это привело к возникновению в начале ХХ века нового направления в геологии - палеогеографии. Конец XIX - начало ХХ века ознаменовались бурным ростом геологии и выделением из нее многих новых самостоятельных дисциплин - петрографии, литологии, минералогии, гидрогеологии, геохимии и других. Большую роль в развитии различных отраслей геологических наук играли успехи физики и химии, на основе которых происходило совершенствование методов изучения минералов и горных пород, свойств глубоких недр Земли и других геологических исследований.
После смерти М.В.Ломоносова в России шло интенсивное накопление фактического материала по геологическому строению земной коры. Совершались многочисленные экспедиции в различные районы страны, носившие рекогносцировочный характер. Эти экспедиции в значительной степени стимулировались неуклонным ростом горной промышленности в России.
Значительную роль в развитии русской геологической науки сыграл Московский университет, открытый в 1755 году по инициативе М.В.Ломоносова, а также открытые позднее Петербургский горный институт, Петербургский университет и другие высшие учебные заведения. При университетах создавались общества испытателей природы. Из среды русских геологов начинают выделяться крупные теоретики, положившие начало школе русских ученых в различных областях геологической науки. Академик В.М.Севергин (1765-1826) осуществил идею М.В.Ломоносова о создании "Всеобщей минералогии России", опубликовав в 1809 году крупную сводку "Опыт минералогического землеописания государства Российского".
Руководство геологическими исследованиями в России с начала XIX века осуществлялось Департаментом горных и соляных дел, а с 1834 года - Штабом Корпуса горных инженеров. В 1882 году был организован Геологический комитет