Понятие и виды относительных величин
Понятие абсолютных величин
Абсолютные величины — это результаты статистических наблюдений. В статистике в отличие от математики все абсолютные величины имеют размерность (единицу измерения), а также могут быть положительными и отрицательными.
Единицы измерения абсолютных величин отражают свойства единиц статистической совокупности и могут быть простыми, отражая 1 свойство (например, масса груза измеряется в тоннах) или сложными, отражая несколько взаимосвязанных свойств (например, тонно-километр или киловатт-час).
Единицы измерения абсолютных величин могут быть 3 видов:
1. Натуральные — применяются для исчисления величин с однородными свойствами (например, штуки, тонны, метры и т.д.). Их недостаток состоит в том, что они не позволяют суммировать разнородные величины.
2. Условно-натуральные — применяются к абсолютным величинам с однородными свойствами, но проявляющим их по-разному. Например, общая масса энергоносителей (дрова, торф, каменный уголь, нефтепродукты, природный газ) измеряется в т.у.т. — тонны условного топлива, поскольку каждый его вид имеет разную теплотворную способность, а за стандарт принято 29,3 мДж/кг. Аналогично общее количество школьных тетрадей измеряется в у.ш.т. — условные школьные тетради размером 12 листов. Аналогично продукция консервного производства измеряется в у.к.б. — условные консервные банки емкостью 1/3 литра. Аналогично продукция моющих средств приводится к условной жирности 40%.
3. Стоимостные единицы измерения выражаются в рублях или в иной валюте, представляя собой меру стоимости абсолютной величины. Они позволяют суммировать даже разнородные величины, но их недостаток состоит в том, что при этом необходимо учитывать фактор инфляции, поэтому статистика стоимостные величины всегда пересчитывает в сопоставимых ценах.
Абсолютные величины могут быть моментными или интервальными. Моментные абсолютные величины показывают уровень изучаемого явления или процесса на определенный момент времени или дату (например, количество денег в кармане или стоимость основных фондов на первое число месяца). Интервальные абсолютные величины — это итоговый накопленный результат за определенный период (интервал) времени (например, зарплата за месяц, квартал или год). Интервальные абсолютные величины, в отличие от моментных, допускают последующее суммирование.
Абсолютная статистическая величина обозначается X, а их общее число в статистической совокупности — N.
Количество величин с одинаковым значением признака обозначается f и называется частота (повторяемость, встречаемость).
Cами по себе абсолютные статистические величины не дают полного представления об изучаемом явлении, так как не показывают его динамику, структуру, соотношение между частями. Для этих целей служат относительные статистические величины.
Понятие и виды относительных величин
Относительная статистическая величина — это результат соотношения двух абсолютных статистических величин.
Если соотносятся абсолютные величины с одинаковой размерностью, то получаемая относительная величина будет безразмерной (размерность сократится) и носит название коэффициент.
Часто применяется искусственная размерность коэффициентов. Она получается путем их умножения:
- на 100 — получают проценты (%);
- на 1000 — получают промилле (‰);
- на 10000 — получают продецимилле (‰O>).
Искусственная размерность коэффициентов применяется, как правило, в разговорной речи и при формулировании результатов, а в самих расчетах она не используется. Чаще всего применяются проценты, в которых принятно выражать полученные значения относительных величин.
Чаще вместо названия относительная статистическая величина используется более краткий термин-синоним — индекс (от лат. index — показатель, коэффициент).
В зависимости от видов соотносимых абсолютных величин при расчете относительных величин, получаются разные виды индексов: динамики, планового задания, выполнения плана, структуры, координации, сравнения, интенсивности.
7 Сущность и значение средних величин.
Сущность и значение средних величин, их виды
Наиболее распространенной формой статистического показателя является средняя величина. Показатель в форме средней величины выражает типичный уровень признака в совокупности. Широкое применение средних величин объясняется тем, что они позволяют сравнивать значения признака у единиц, относящихся к разным совокупностям. Например, можно сравнивать среднюю продолжительность рабочего дня, средний тарифный разряд рабочих, средний уровень заработной платы по различным предприятиям.
Сущность средних величин заключается в том, что в них взаимопогашаются отклонения значений признака у отдельных единиц совокупности, обусловленные действием случайных факторов. Поэтому средние величины должны рассчитываться для достаточно многочисленных совокупностей (в соответствии с законом больших чисел). Надежность средних величин зависит также от колеблемости значений признака в совокупности. В общем случае, чем меньше вариация признака и чем больше совокупность, по которой определяется средняя величина, тем она надежнее.
Типичность средней величины непосредственным образом связана также с однородностью статистической совокупности. Средняя величина только тогда будет отражать типичный уровень признака, когда она рассчитана по качественно однородной совокупности. В противном случае метод средних используется в сочетании с методом группировок. Если совокупность неоднородна, то общие средние заменяются или дополняются групповыми средними, рассчитанными по качественно однородным группам.
Виды средних величин
Средние величины делятся на два больших класса: степенные средние и структурные средние
Степенные средние:
- Арифметическая
- Гармоническая
- Геометрическая
- Квадратическая
Структурные средние:
- Мода
- Медиана
Выбор формы средней величины зависит от исходной базы расчета средней и от имеющейся экономической информации для ее расчета.
Исходной базой расчета и ориентиром правильности выбора формы средней величины являются экономические соотношения, выражающие смысл средних величин и взаимосвязь между показателями.
Расчет некоторых средних величин:
- Средняя заработная плата 1 работника = Фонд заработной платы / Число работников
- Средняя цена 1 продукции = Стоимость производства / Количество единиц продукции
- Средняя себестоимость 1 изделия = Стоимость производства / Количество единиц продукции
- Средняя урожайность = Валовый сбор / посевная площадь
- Средняя производительность труда = объем продукции, работ, услуг / Отработанное время
- Средняя трудоемкость = отработанное время / объем продукции, работ, услуг
- Средняя фондоемкость = Средняя стоимость основных фондов / объем продукции, работ и услуг
- Средняя фондоотдача = объем продукции, работ и услуг / средняя стоимость основных фондов
- Средняя фондовооруженность = средняя величина основных производственных фондов / среднесписочная численность производственного персонала
- Средний процент брака = ( стоимость бракованной продукции / Стоимость всей произведенной продукции ) * 100%
8. Важнейшими условиями (принципами) для правильного вычисления и использования средних величин является следующие:
1. В каждом конкретном случае необходимо исходить из качественного содержания осредняемого признака, учитывать взаимосвязь изучаемых признаков и имеющиеся для расчета данные.
2. Индивидуальные значения, из которых вычисляются средние, должны относиться к однородной совокупности, а число их должно быть значительным.