Превосходство гетерозигот у Drosophila pseudoobscura
Дикий североамериканский вид Drosophila pseudoobscura известен своей изменчивостью по хромосоме III. У этого вида (как отмечалось в гл. 4) описано 16 типов хромосомы III, отличающихся друг от друга по инверсиям. Все типы инверсий, выявляемые цитологически в хромосомах слюнных желез личинок, получили названия (Стандарт, Эрроухед, Чирикауа, Тимберлайн, Пайкс-Пик и т. д.) и буквенные обозначения (ST, AR, CH, TL, РР и т. д.). Большая часть популяций полиморфна по некоторым типам инверсий, и в них встречаются различные возможные гомозиготы и гетерозиготы.
Инвертированные участки хромосомы различаются как по содержащимся в них генам, так и по своим цитологическим признакам. Популяция, полиморфная по инверсиям ST, CH и AR, содержит не только хромосомы трёх разных типов, но и три раз ных набора генов в инвертированных участках; поэтому генотипы ST/CH, ST/AR и CH/AR гетерозиготны не только по инверсиям, но и по генам. Инверсии предотвращают эффективную рекомбинацию генов в гетерозиготах по инверсиям. Следовательно, полиморфизм по инверсиям у D. pseudoobscura одновременно представляет собой полиморфизм по блокам генов, которые остаются интактными из поколения в поколение.
Таблица 14.1. Наблюдаемые и ожидаемые частоты гетерозигот и гомозигот по инверсиям в хромосоме III (данные Epling, Mitchel, Mattoni, 1953*) | ||
Тип | Наблюдаемые частоты | Ожидаемые частоты |
ST/CH | 0.232 | 0.168 |
ST/AR | 0.232 | 0.168 |
Все гетерозиготы | 0.830 | 0.724 |
ST/ST | 0.134 | 0.184 |
Все гомозиготы | 0.170 | 0.273 |
Добржанский и его школа изучали полиморфизм по инверсиям в природных популяциях D. pseudoobscura по всему ареалу этого вида. Наиболее обширные выборки в течение многих лет отбирали из некоторых популяций Сьерра-Невады и Сан-Джасинто (Калифорния). Кроме того, проводились многочисленные лабораторные эксперименты в популяционных ящиках с линиями мух, отловленных в тех же самых природных популяциях в Калифорнии.
В этих калифорнийских горных популяциях обычно встречаются инверсии ST, СН и AR; встречаются также, но с низкой частотой, инверсии TL, РР и SC. Нередко частота гетерозигот по инверсиям бывает выше той, которую следовало бы ожидать на основании равновесия Харди — Вайнбарга. Действительную частоту различных типов инверсий в гаметном фонде определяют с помощью соответствующих методов взятия выборок из популяции; на основании полученных данных по формуле Харди — Вайнберга вычисляют ожидаемую частоту гетерозиготных генотипов. Затем эту ожидаемую частоту сопоставляют с действительной частотой гетерозигот по инверсиям. При этом в определённое время года в природных популяциях постоянно обнаруживается статистически значимый избыток гетерозигот.
Так, в выборках, взятых в мае 1952 г. в горах Сан-Джасинто из одной популяции, полиморфной по пяти инверсиям, были обнаружены значительные различия между фактическими и ожидаемыми частотами гетерозигот и гомозигот по инверсиям (табл. 14.1). Данные табл. 14.1 показывают, что наблюдается устойчивый избыток гетерозигот и соответствующий недостаток гомозигот по сравнению с тем, чего следовало бы ожидать, исходя из формулы Харди — Вайнберга.
Наблюдавшиеся отклонения от равновесия Харди — Вайнберга можно объяснить на основании отбора в пользу гетерозигот. Один из способов проверки этой гипотезы состоит в том, чтобы сравнить частоты гетерозигот и гомозигот по инверсиям в выборке яиц, взятых из природной популяции, с их частотами в выборке взрослых мух. Оказалось, что соотношение гетерозиготных и гомозиготных генотипов в выборках яиц соответствует формуле Харди — Вайнберга. Недостаток гомозигот в выборках взрослых особей был, вероятно, обусловлен дифференциальной смертностью в период развития от яйца до взрослых стадий, действующей в пользу гетерозигот (Dobzhansky, Levene, 1948*).
Параллельные данные о превосходстве гетерозигот были получены для искусственных популяций, выращенных в популяционных ящиках. Основателями этих искусственных популяций служили линии мух, взятые из природных популяций Сан-Джасинто и несущие хромосомы ST, СН и AR. Популяционные ящики содержали в тепле и допускали возникновение в них перенаселенности. На стадии яйца соотношение гомозигот и гетерозигот по инверсиям соответствовало формуле Харди — Вайнберга. Однако на стадии взрослых особей в тех же самых искусственных популяциях наблюдался достоверный избыток гетерозигот по инверсиям (Dobzhansky, 1947a*).
Изучение развития и поведения мух показало, что более высокую приспособленность гетерозигот по инверсиям можно разложить на ряд различных компонентов: более высокая жизнеспособность на стадиях, предшествующих достижению половой зрелости; более высокая скорость развития; большая продолжительность жизни, плодовитость и быстрота нахождения брачного партнера (Moos, 1955; Dobzhansky, 1970, p. 137—138*).
Следует снова подчеркнуть, что превосходство гетерозигот проявляется только при определённых температуре, корме и плотности популяции; в отсутствие нужных условий, будь то природные или искусственные популяции, гетерозиготы по инверсиям теряют свое селективное преимущество перед гомозиготами.
Важно отметить, что природные популяции периодически действительно оказываются в таких условиях среды, которые приводят к проявлению превосходства гетерозигот. В этих популяциях, если не постоянно, то во всяком случае с перерывами, действует уравновешивающий отбор. Taкого прерывистого действия достаточно для постоянного сохранения сбалансированного полиморфизма. В прохладную погоду в начале лета (май и июнь) в природных популяциях возрастает частота хромосом AR и CH, а в жаркую летнюю погоду и осенью (с июля по сентябрь или октябрь) возрастает частота хромосом ST, однако эти изменения никогда не доходят до полного закрепления или элиминации (Dobzhansky, 1943; 1947b; 1948a*). Таким образом, уравновешивающий отбор способствует расширению сезонных границ популяции по сравнению с теми, какие, вероятно, могут быть у мономорфной популяции.