Структурно-функциональная организация эукариотических клеток
Приспособленность.
Раздражимость.
Дискретность(деление на части). Отдельный организм или иная биологическая система (вид, биоценоз др.) состоит из отдельных изолированных, т. е. обособленных или отграниченных в пространстве, но, тем не менее, связанных и взаимодействующих между собой частей, образующих структурно-функциональное единство.
Целостность(интегрированность)
Ритмичность. В биологии под ритмичностью понимают периодические изменения интенсивности физиологических функций и формообразовательных процессов с различными периодами колебаний
Энергозависимость. Живые тела представляют собой «открытые» для поступления энергии системы.
5.Гипотеза панспермии – о неземном происхождении жизни путем занесения «зародышей жизни» из космоса на Землю – впервые была высказана немецким биологом и врачом Г. Рихтером в конце XIX в. Концепция панспермии (от греч. pan – весь, sperma – семя) допускает возможность происхождения жизни в разное время в разных частях Вселенной и переноса ее различными путями на Землю (метеориты, астероиды, космическая пыль).
Согласно гипотезе стационарного состояния, жизнь никогда не возникала, а существовала вечно вместе с Землей, отличаясь большим разнообразием живого. С изменением условий жизни на Земле происходило и изменение видов: одни исчезали, другие появлялись. Эта гипотеза основывается в основном на исследованиях палеонтологии.
Гипотеза самопроизвольного зарождения жизни была выдвинута в древнем Китае и Индии как альтернатива креационизму. Представления этой гипотезы поддерживали мыслители Древней Греции (Платон, Аристотель), а также ученые периода Нового времени (Галилей, Декарт, Ламарк). Согласно этой гипотезе, живые организмы (низшие) могут появиться путем саморождения из неживого вещества, содержащего некое «активное начало». Так, например, по Аристотелю, насекомые и лягушки при определенных условиях могут заводиться в иле, сырой почве; черви и водоросли в стоячей воде, а вот личинки мух – в протухшем мясе при его гниении.
Однако уже с начала XVII в. такое понимание происхождения жизни стало подвергаться сомнению. Ощутимый удар по этой гипотезе нанес итальянский естествоиспытатель и врач Ф. Реди (1626–1698), который в 1688 г. раскрыл сущность появления жизни в гниющем мясе. Ф. Реди сформулировал свой принцип: «Все живое – от живого» и стал основоположником концепции биогенеза, утверждавшей, что жизнь может возникнуть только из предшествующей жизни.
Французский микробиолог Л. Пастер (1822–1895) своими опытами с вирусами окончательно доказал несостоятельность идеи спонтанного самозарождения жизни. Однако, опровергнув эту гипотезу, он не предложил свою, не пролил свет на вопрос о возникновении жизни.
Тем не менее опыты Л. Пастера имели большое значение в получении богатого эмпирического материала в области микробиологии его времени.
Абиогенез — процесс превращения неживой природы в живую.
Академик А.И. Опарин опубликовал в 1924 г. свой труд «Происхождение жизни», где была изложена принципиально новая гипотеза происхождения жизни. Суть гипотезы сводилась к следующему: зарождение жизни на Земле - длительный эволюционный процесс становления живой материи в недрах неживой. И произошло это путем химической эволюции, в результате которой простейшие органические вещества образовались из неорганических под влиянием сильнодействующих физико-химических факторов, и тем самым химическая эволюция постепенно поднялась на качественно новый уровень и перешла в биохимическую эволюцию.
6.Молекулярный уровень. Элементарными единицами этого уровня организации жизни являются химические вещества; нуклеиновые кислоты, белки, углеводы, липиды и др. На этом уровне в основном проявляются такие важнейшие процессы жизнедеятельности, как передача наследственной информации, биосинтез, превращение энергии и др.
Клеточный уровень. На клеточном уровне организации структурными элементами выступает клетка. Способность к воспроизведению себе подобных, включение различных химических элементов Земли в состав клетки, регуляция химических реакций, запасание и потребление энергии - основные процессы этого уровня.
Тканевый уровень. Ткань совокупность клеточных элементов различных клеточных типов и межклеточного вещества, специализированная на выполнении специфических функций.
Органныйуровень. Орган - совокупность тканей, которые связаны выполнением общих функций и занимают определенное место в многоклеточном организме. Организменный уровень организации присущ одноклеточным и многоклеточным биосистемам (растениям, грибам, животным, в том числе человеку и разнообразным микроорганизмам). У живых организмов проявляются такие свойства, как питание, дыхание, выделение, раздражимость, рост и развитие, размножение, поведение, продолжительность жизни, взаимоотношения с окружающей средой. Все перечисленные процессы в совокупности характеризуют организм как целостную саморегулирующуюся биосистему.
Популяционно-видовой уровеньорганизации характеризуется объединением родственных особей в популяции, а популяций - в виды, что приводит к возникновению новых свойств системы. Основные свойства этого уровня: рождаемость, смертность, выживание, структура (половая, возрастная, экологическая), плотность, численность, функционирование в природе.
Биогеоценотический (экосистемный) уровень организации основными структурными элементамиявляются популяции разных видов. Данный уровень характеризуется множеством свойств. К ним относятся: структура экосистемы, видовой и количественный состав ее населения, типы биотических связей, пищевые цепи и сети", трофические уровни, продуктивность, энергетика, устойчивость и др. Организующие свойства проявляются в круговороте веществ и потоке энергии, саморегулировании и устойчивости, автономности, открытости системы, сезонных изменениях.
Биосферный уровень. Самый высокий уровень организации жизни. Основными структурными единицами этого уровня являются биогеоценозы (экосистемы) и окружающая их среда, т. е. географическая оболочка Земли (атмосфера, гидросфера, почва, солнечная радиация и др.) и антропогенное воздействие. Для этого уровня организации характерны: активное взаимодействие живого и неживого вещества планеты; биологический круговорот веществ и потоки энергии с входящими в него геохимическими циклами; хозяйственная и этнокультурная деятельность человека.
7. Клеточная теория сформулирована немецким исследователем, зоологом Т. Шванном (1839). Поскольку при создании этой теории Шванн широко пользовался работами ботаника М. Шлейдена, последнего по праву считают соавтором клеточной теории. Исходя из предположения о схожести (гомологичности) растительных и животных клеток, доказываемой одинаковым механизмом их возникновения, Шванн обобщил многочисленные данные в виде теории, согласно которой клетки являются структурной и функциональной основой живых существ.
В конце XIX столетия немецкий патолог Р. Вирхов на основе новых фактов пересмотрел клеточную теорию. Ему принадлежит вывод о том, что клетка может возникнуть лишь из предсуществующей клетки. Им также создана вызвавшая критику концепция «клеточного государства», согласно которой многоклеточный организм состоит из относительно самостоятельных единиц (клеток), поставленных в своей жизнедеятельности в тесную зависимость друг от друга.
На современном уровне развития биологии основные положения клеточной теории можно представить следующим образом:
1)Клетка — элементарная живая система, единица строения, жизнедеятельности, размножения и индивидуального развития организмов.
2)Клетки всех живых организмов сходны по строению и химическому составу.
3)Новые клетки возникают только путем деления ранее существовавших клеток.
4)Клеточное строение организмов — доказательство единства происхождения всего живого.
8. Типы клеточной организации: 1) прокариотический, 2) эукариотический.
Общим для клеток обоих типов является то, что клетки ограничены оболочкой, внутреннее содержимое представлено цитоплазмой. В цитоплазме находятся органоиды и включения. Органоиды — постоянные, обязательно присутствующие, компоненты клетки, выполняющие специфические функции. Органоиды могут быть ограничены одной или двумя мембранами (мембранные органоиды) или не ограничены мембранами (немембранные органоиды). Включения — непостоянные компоненты клетки, представляющие собой отложения веществ, временно выведенных из обмена или конечных его продуктов.
Прокариотические клетки (доядерные) не содержат оформленного ядра. Основными компонентами прокариотических клеток являются оболочка и цитоплазма. Структурой, отвечающей за передачу наследственной информации, является генофор (нуклеоид), расположенный непосредственно в цитоплазме. По химической природе генофор – это молекула ДНК, не связанная с белками и имеющая форму кольца.
На поверхности плазматической мембраны бактерий располагается клеточная стенка, состоящая из муреина (полисахаридных цепей, соединенных друг с другом короткими цепями пептидов). У некоторых клеток клеточная стенка покрыта защитным слизистым слоем или капсулой. Клеточная стенка сохраняет форму клеток, обеспечивает их жесткость и антигенные свойства.
Мембрана прокариот имеет сложнодифференцированные впячивания – мезосомы, которые по своим функциям напоминают митохондрии эукариотических клеток.
Цитоплазма прокариотических клеток лишена органоидов, за исключением рибосом. В ней находятся включения в виде гранул гликогена, липидов и т.д. Кроме того, в ней присутствуют плазмиды (внекольцевые фрагменты ДНК, определяющие ряд признаков и свойств данной клетки, гены которых контролируют незначительную часть наследственных признаков бактериальной клетки). Они способны к самостоятельной репликации и стабильно наследуются потомством. Широко используются в генной инженерии.
У зеленых и пурпурных бактерий (автотрофы) на впячиваниях плазматической мембраны находятся фотосинтезирующие пигменты. Следовательно, клетки сине-зеленых водорослей (цианеи) сходны с бактериальными, но, кроме вышеперечисленных компонентов, они содержат хлорофилл.
12.
13.Эндоплазматическая сеть (ЭПС), илиэндоплазматический ретикулум (ЭПР), — одномембранный органоид. Представляет собой систему мембран, формирующих «цистерны» и каналы, соединенных друг с другом и ограничивающих единое внутреннее пространство — полости ЭПС. Мембраны с одной стороны связаны с цитоплазматической мембраной, с другой — с наружной ядерной мембраной. Различают два вида ЭПС: 1) шероховатая (гранулярная), содержащая на своей поверхности рибосомы, и 2) гладкая (агранулярная), мембраны которой рибосом не несут.
Функции: 1) транспорт веществ из одной части клетки в другую, 2) разделение цитоплазмы клетки на компартменты ( «отсеки»), 3) синтез углеводов и липидов (гладкая ЭПС), 4) синтез белка (шероховатая ЭПС), 5) место образования аппарата Гольджи.
Аппарат Гольджи, или комплекс Гольджи, — одномембранный органоид. Представляет собой стопки уплощенных «цистерн» с расширенными краями. С ними связана система мелких одномембранных пузырьков (пузырьки Гольджи). Каждая стопка обычно состоит из 4-х–6-ти «цистерн», является структурно-функциональной единицей аппарата Гольджи и называется диктиосомой. Число диктиосом в клетке колеблется от одной до нескольких сотен. В растительных клетках диктиосомы обособлены.
Аппарат Гольджи обычно расположен около клеточного ядра (в животных клетках часто вблизи клеточного центра).
Функции аппарата Гольджи: 1) накопление белков, липидов, углеводов, 2) модификация поступивших органических веществ, 3) «упаковка» в мембранные пузырьки белков, липидов, углеводов, 4) секреция белков, липидов, углеводов, 5) синтез углеводов и липидов, 6) место образования лизосом. Секреторная функция является важнейшей, поэтому аппарат Гольджи хорошо развит в секреторных клетках.
Лизосомы — одномембранные органоиды. Представляют собой мелкие пузырьки (диаметр от 0,2 до 0,8 мкм), содержащие набор гидролитических ферментов. Ферменты синтезируются на шероховатой ЭПС, перемещаются в аппарат Гольджи, где происходит их модификация и упаковка в мембранные пузырьки, которые после отделения от аппарата Гольджи становятся собственно лизосомами. Лизосома может содержать от 20 до 60 различных видов гидролитических ферментов. Расщепление веществ с помощью ферментов называют лизисом.
Различают: 1) первичные лизосомы, 2) вторичные лизосомы. Первичными называются лизосомы, отшнуровавшиеся от аппарата Гольджи. Первичные лизосомы являются фактором, обеспечивающим экзоцитоз ферментов из клетки.
Вторичными называются лизосомы, образовавшиеся в результате слияния первичных лизосом с эндоцитозными вакуолями. В этом случае в них происходит переваривание веществ, поступивших в клетку путем фагоцитоза или пиноцитоза, поэтому их можно назвать пищеварительными вакуолями.
Функции лизосом: 1) внутриклеточное переваривание органических веществ, 2) уничтожение ненужных клеточных и неклеточных структур, 3) участие в процессах реорганизации клеток.
Вакуоли — одномембранные органоиды, представляют собой «емкости», заполненные водными растворами органических и неорганических веществ. В образовании вакуолей принимают участие ЭПС и аппарат Гольджи. Молодые растительные клетки содержат много мелких вакуолей, которые затем по мере роста и дифференцировки клетки сливаются друг с другом и образуют одну большую центральную вакуоль. Центральная вакуоль может занимать до 95% объема зрелой клетки, ядро и органоиды оттесняются при этом к клеточной оболочке. Мембрана, ограничивающая растительную вакуоль, называется тонопластом. Жидкость, заполняющая растительную вакуоль, называется клеточным соком. В состав клеточного сока входят водорастворимые органические и неорганические соли, моносахариды, дисахариды, аминокислоты, конечные или токсические продукты обмена веществ (гликозиды, алкалоиды), некоторые пигменты (антоцианы).
В животных клетках имеются мелкие пищеварительные и автофагические вакуоли, относящиеся к группе вторичных лизосом и содержащие гидролитические ферменты. У одноклеточных животных есть еще сократительные вакуоли, выполняющие функцию осморегуляции и выделения.
Функции вакуоли: 1) накопление и хранение воды, 2) регуляция водно-солевого обмена, 3) поддержание тургорного давления, 4) накопление водорастворимых метаболитов, запасных питательных веществ, 5) окрашивание цветов и плодов и привлечение тем самым опылителей и распространителей семян, 6) см. функции лизосом.
Эндоплазматическая сеть, аппарат Гольджи, лизосомы и вакуоли образуют единую вакуолярную сеть клетки, отдельные элементы которой могут переходить друг в друга.
Пероксисомы - клеточные органеллы, в которых осуществляются окисление жирных кислот с длинной цепью, синтез желчных кислот , холестерина , а также эфиросодержащих липидов , участвующих в построении миелиновой оболочки нервных волокон , метаболизме фетановой кислоты и т.д.
Пероксисомы окружены только одной мембраной и не содержат ДНК и рибосом, хотя, как считают, они, подобно митохондриям, являются самовоспроизводящимися органеллами, возникая из предсуществовавших и формируясь путем роста и деления.
СФЕРОСОМЫ (от греч. sphaira — шар и s6ma — тело), липидные капли, сферические тельца в цитоплазме растительных клеток, функцией которых является биосинтез жиров. Содержат различные смеси липидов.
Митохондрии
Строение митохондрии:
1 — наружная мембрана;
2 — внутренняя мембрана; 3 — матрикс; 4 — криста; 5 — мультиферментная система; 6 — кольцевая ДНК.
Форма, размеры и количество митохондрий чрезвычайно варьируют. По форме митохондрии могут быть палочковидными, округлыми, спиральными, чашевидными, разветвленными. Длина митохондрий колеблется в пределах от 1,5 до 10 мкм, диаметр — от 0,25 до 1,00 мкм. Количество митохондрий в клетке может достигать нескольких тысяч и зависит от метаболической активности клетки.
Митохондрия ограничена двумя мембранами. Наружная мембрана митохондрий (1) гладкая, внутренняя (2) образует многочисленные складки — кристы (4). Кристы увеличивают площадь поверхности внутренней мембраны, на которой размещаются мультиферментные системы (5), участвующие в процессах синтеза молекул АТФ. Внутреннее пространство митохондрий заполнено матриксом (3). В матриксе содержатся кольцевая ДНК (6), специфические иРНК, рибосомы прокариотического типа (70S-типа), ферменты цикла Кребса.
Митохондриальная ДНК не связана с белками («голая»), прикреплена к внутренней мембране митохондрии и несет информацию о строении примерно 30 белков. Для построения митохондрии требуется гораздо больше белков, поэтому информация о большинстве митохондриальных белков содержится в ядерной ДНК, и эти белки синтезируются в цитоплазме клетки. Митохондрии способны автономно размножаться путем деления надвое. Между наружной и внутренней мембранами находится протонный резервуар, где происходит накопление Н+.
Функции митохондрий: 1) синтез АТФ, 2) кислородное расщепление органических веществ.
Согласно одной из гипотез (теория симбиогенеза) митохондрии произошли от древних свободноживущих аэробных прокариотических организмов, которые, случайно проникнув в клетку-хозяина, затем образовали с ней взаимовыгодный симбиотический комплекс. В пользу этой гипотезы свидетельствуют следующие данные. Во-первых, митохондриальная ДНК имеет такие же особенности строения как и ДНК современных бактерий (замкнута в кольцо, не связана с белками). Во-вторых, митохондриальные рибосомы и рибосомы бактерий относятся к одному типу — 70S-типу. В-третьих, механизм деления митохондрий сходен с таковым бактерий. В-четвертых, синтез митохондриальных и бактериальных белков подавляется одинаковыми антибиотиками.
Пластиды
Строение пластид: 1 — наружная мембрана; 2 — внутренняя мембрана; 3 — строма; 4 — тилакоид; 5 — грана; 6 — ламеллы; 7 — зерна крахмала; 8 — липидные капли.
Пластиды характерны только для растительных клеток. Различают три основных типа пластид: лейкопласты — бесцветные пластиды в клетках неокрашенных частей растений, хромопласты — окрашенные пластиды обычно желтого, красного и оранжевого цветов, хлоропласты — зеленые пластиды.
14. Рибосомы — немембранные органоиды, диаметр примерно 20 нм. Рибосомы состоят из двух субъединиц — большой и малой, на которые могут диссоциировать. Химический состав рибосом — белки и рРНК. Молекулы рРНК составляют 50–63% массы рибосомы и образуют ее структурный каркас. Различают два типа рибосом: 1) эукариотические (с константами седиментации целой рибосомы — 80S, малой субъединицы — 40S, большой — 60S) и 2) прокариотические (соответственно 70S, 30S, 50S).
Субъединицы рибосомы эукариот образуются в ядрышке. Объединение субъединиц в целую рибосому происходит в цитоплазме, как правило, во время биосинтеза белка.
Функция рибосом: сборка полипептидной цепочки (синтез белка).
Цитоскелет образован микротрубочками и микрофиламентами. Микротрубочки — цилиндрические неразветвленные структуры. Длина микротрубочек колеблется от 100 мкм до 1 мм, диаметр составляет примерно 24 нм, толщина стенки — 5 нм. Основной химический компонент — белок тубулин. Микротрубочки разрушаются под воздействием колхицина. Микрофиламенты — нити диаметром 5–7 нм, состоят из белка актина. Микротрубочки и микрофиламенты образуют в цитоплазме сложные переплетения. Функции цитоскелета: 1) определение формы клетки, 2) опора для органоидов, 3) образование веретена деления, 4) участие в движениях клетки, 5) организация тока цитоплазмы.
Клеточный центр — структура цитоплазмы, которая является источником роста микротрубочек, своеобразный центр их организации. Под клеточным центром понимают совокупность центриолейи центросферы. Центриоли обычно располагаются в геометрическом центре клетки. Эти структуры обязательны для клеток животных, а также встречаются у некоторых водорослей, отсутствуют у высших растений, ряда простейших и грибов. В делящихся клетках они принимают участие в формировании веретена деления. Центриоли состоят из 9 триплетов микротрубочек, образующих полый цилиндр шириной около 0,15 мкм, длиной — 0,3-0,5 мкм. В интерфазных клетках присутствуют 2 центриоли. Центросфера окружает центриоли и представляет собой совокупность дополнительных структур: исчерченные волокнистые корешки, дополнительные микротрубочки, фокусы схождения микротрубочек. В центросфере микротрубочки радиально расходятся от зоны центриоли. Функции: 1) обеспечение расхождения хромосом к полюсам клетки во время митоза или мейоза, 2) центр организации цитоскелета.
Реснички и жгутики.
В световом микроскопе выглядят как тонкие выросты. Они имеются в некоторых клетках – сперматозоидах, эпителиоцитах трахеи и бронхов, семявыносящих путей мужчины, яйцеводах женщины.
Миофибриллы находятся в мышечных клетках и миосимпластах. Являются органоидами сокращения.
Нейрофибриллы находятся в нейронах состоят из нейротубул и нейрофиламентов. Их функция - опорная и транспортная.
Тонофибриллысодержатся в эпителиоцитах. Участвуют в кератинизации.
Микроворсинки– увеличивают площадь всасывания. Содержатся, например, в эпителиоцитах кишечника, где участвуют в процессах пристеночного пищеварения.
Базальная складчатость – складки плазмолеммы, между которыми располагаются митохондрии, ориентированные перпендикулярно к базальной мембране.
16.Табл.4
17.
18. Классификация структурных элементов интерфазного ядра:
- хроматин; предназначен для обеспечения процессов транскрипции и редупликации в интерфазе.
- ядрышко; Основной функциейядрышка является синтез рибосом
- кариоплазма; 1. Связывает в единое целое все части ядра.
2. Через кариоплазму происходит транспорт различных веществ.
- кариолемма (ядерная оболочка) отделяет содержимое ядра от цитоплазмы (барьерная функция), в то же время обеспечивает регулируемый обмен веществ между ядром и цитоплазмой. Ядерная оболочка принимает участие в фиксации хроматина. В кариоплазме ядра располагается хроматин.
19. 1. НУКЛЕОСОМА– дискретная единица хроматина
Нуклеосомы в виде «бусин на нити»
уплотнение ДНК в 7 раз
2. Нуклеомерный
- упаковка нуклеосом с помощью гистоновых белков.
-Возникает структура спирального типа – соленоид.
Она повышает компактность ДНК еще в 40 -70 раз.
Под электронным микроскопом соленоид –фибриллы хроматина.
3. Доменно-петлевой или хромомерный
- Связан с негистоновыми белками.
- Фибриллы хроматина в местах связывания с негистоновыми белками образуют петли.
- Формируется поперечная петлистая структура вдоль хромосомы
Уплотнение ДНК в 600-700раз.
4. Дезактивация хроматина, образуется гетерохроматин. В митотических хромосомах ЭТО–хромонемы (профаза, ранняя телофаза).
5. Спирализация хроматина - образование хромосом.
20. Хроматин является нуклеопротеидом, так как состоит из ДНК (75%) и белков (25%). Участки ДНК обвивают группы из 8 молекул белков, в результате ДНК конденсируется (укорачивается) и становится более компактной. Степень конденсации хроматина в разных участках ядра различна. В связи с этим различают гетерохроматин и эухроматин.
Хроматин представляет собой вещество, хорошо воспринимающее краситель (хромос), откуда и произошло его название. Хроматин состоит из хроматиновых фибрилл, толщиной 20-25 нм, которые могут располагаться в ядре рыхло или компактно. На этом основании различают два вида хроматина:
Эухроматин- рыхлый или деконденсированный хроматин, слабо окрашивается основными красителями; Эухроматин выглядит как сеть из тонких нитей. Он генетически активен, генетическая информация ДНК копируется на молекулы РНК (процесс транскрипции), переносится в цитоплазму, где на ее основе синтезируются различные белки.
Гетерохроматин - компактный или конденсированный хроматин, хорошо окрашивается этими же красителями. Гетерохроматин находится в более конденсированном состоянии, поэтому генетически неактивен (в его состав входит неинформативная ДНК), генетическая информация не реализуется.
21. Метафазная хромосома: конденсированные хромосомы , образующиеся на стадии метафазы при митозе (перед делением клетки и после синтеза ДНК ) в эукариотическомклеточном цикле . Метафазные хромосомы состоят из двух соединенных хроматид . Метафазные хромосомы используют для прокрашивания при кариотипировании.
Метафазные хромосомы состоят из двух продольных копий, которые называются сестринскими хроматидами и которые образуются при репликации. На стадии метафазы сестринские хроматиды соединены в районе первичной перетяжки, называемой центромерой. Центромера отвечает за расхождение сестринских хроматид в дочерние клетки при делении. Центромера делит хромосомы на две части, называемые плечами. Длина хромосомы и положение центромеры являются основными морфологическими признаками метафазных хромосом.
В зависимости от расположения центромеры различают три типа строения хромосом:
· акроцентрические хромосомы, у которых центромера находится практически на конце, и второе плечо настолько мало, что его может быть не видно на цитологических препаратах;
· субметацентрические хромосомы с плечами неравной длины;
· метацентрические хромосомы, у которых центромера расположена посередине или почти посередине.
Эту классификацию хромосом на основе соотношения длин плеч предложил в 1912 году российский ботаник и цитолог С. Г. Навашин. Помимо вышеуказанных трёх типов С. Г. Навашин выделял ещё и телоцентрические хромосомы, то есть хромосомы только с одним плечом.
Дополнительным морфологическим признаком некоторых хромосом является так называемая вторичная перетяжка, которая внешне отличается от первичной отсутствием заметного угла между сегментами хромосомы. Вторичные перетяжки бывают короткими и длинными и локализуются в разных точках по длине хромосомы. Во вторичных перетяжках находятся, как правило, ядрышковые организаторы, содержащие многократные повторы генов, кодирующих рибосомальные РНК. Небольшие хромосомные сегменты, отделяемые от основного тела хромосомы вторичными перетяжками, называются спутниками.
Правило четности хромосом
Гомологичные хромосомы одинаковые по форме и строению, расположению центромер, хромомер, других деталей строения. Негомологические хромосомы всегда имеют различия. Поэтому есть правило индивидуальности хромосом: каждая пара гомологичных хромосом характеризуется своими особенностями.
Основные сведения о хромосомном наборе человека в целом и об индивидуальных хромосомах получены в результате изучения хромосом в метафазе митоза. На этой стадии митоза отчетливо видно, что диплоидный набор хромосом человека состоит из 46 элементов: 22 пар аутосом и одной пары половых хромосом (XX у женщин и XY у мужчин).
Группа А (1-3-я) — самые большие хромосомы; 1 и 3-я — метацентрические, 2-я — субметацентрическая.
Группа В (4 и 5-я) — крупные субметацентрические хромосомы.
Группа С (6-12-я и Х-хромосома) — субметацентрические хромосомы среднего размера.
Группа В (13-15-я) — акроцентрические хромосомы средних размеров.
Группа Е (16 -18-я) — маленькие субметацентрические хромосомы.
Группа F (19 и 20-я) — самые маленькие метацентрические хромосомы.
Группа G (21, 22-я и Y) — самые маленькие акроцентрические хромосомы.
25.Закономерные изменения структурно-функциональных характеристик клетки во времени составляют содержание жизненного цикла клетки (клеточного цикла). Клеточный цикл — это период существования клетки от момента ее образования путем деления материнской клетки до собственного деления или смерти.
Фазы клеточного цикла:
1) пресинтетическая (G1). Идет сразу после деления клетки. Синтеза ДНК еще не происходит. Клетка активно растет в размерах, запасает вещества, необходимые для деления: белки (гистоны, структурные белки, ферменты), РНК, молекулы АТФ. Происходит деление митохондрий и хлоропластов (т. е. структур, способных к ауторепродукции). Восстанавливаются черты организации интерфазной клетки после предшествующего деления;
2) синтетическая (S). Происходит удвоение генетического материала путем репликации ДНК. Она происходит полуконсервативным способом, когда двойная спираль молекулы ДНК расходится на две цепи и на каждой из них синтезируется комплементарная цепочка.
В итоге образуются две идентичные двойные спирали ДНК, каждая из которых состоит из одной новой и старой цепи ДНК. Количество наследственного материала удваивается. Кроме этого, продолжается синтез РНК и белков. Также репликации подвергается небольшая часть митохонд-риальной ДНК (основная же ее часть реплицируется в G2 период);
3) постсинтетическая (G2). ДНК уже не синтезируется, но происходит исправление недочетов, допущенных при синтезе ее в S период (репарация). Также накапливаются энергия и питательные вещества, продолжается синтез РНК и белков (преимущественно ядерных).
S и G2 непосредственно связаны с митозом, поэтому их иногда выделяют в отдельный период — препрофазу.
Важным компонентом клеточного цикла является митотический цикл —комплекс взаимосвязанных и согласованных во времени событий, происходящих в процессе подготовки клетки к делению и на протяжении самого деления. Кроме того, в жизненный цикл включается период выполнения клеткой многоклеточного организма специфических функций, а также периоды покоя. В периоды покоя ближайшая судьба клетки не определена: она может либо начать подготовку к митозу, либо приступить к специализации в определенном функциональном направлении .
Продолжительность митотического цикла для большинства клеток составляет от 10 до 50 ч. Длительность цикла регулируется путем изменения продолжительности всех его периодов.
26.
Стадии митоза.
Процесс митоза принято подразделять на четыре основные фазы: профазу, метафазу, анафазу и телофазу. Так как он непрерывен, смена фаз осуществляется плавно — одна незаметно переходит в другую.
В профазе увеличивается объем ядра, и вследствие спирализации хроматина формируются хромосомы. К концу профазы видно, что каждая хромосома состоит из двух хроматид. Постепенно растворяются ядрышки и ядерная оболочка, и хромосомы оказываются беспорядочно расположенными в цитоплазме клетки. Центриоли расходятся к полюсам клетки. Формируется ахроматиновое веретено деления, часть нитей которого идет от полюса к полюсу, а часть — прикрепляется к центромерам хромосом. Содержание генетического материала в клетке остается неизменным (2n2хр).
В метафазе хромосомы достигают максимальной спирализации и располагаются упорядоченно на экваторе клетки, поэтому их подсчет и изучение проводят в этот период. Содержание генетического материала не изменяется (2n2хр).
В анафазе каждая хромосома «расщепляется» на две хроматиды, которые с этого момента называются дочерними хромосомами. Нити веретена, прикрепленные к центромерам, сокращаются и тянут хроматиды (дочерние хромосомы) к противоположным полюсам клетки. Содержание генетического материала в клетке у каждого полюса представлено диплоидным набором хромосом, но каждая хромосома содержит одну хроматиду (2nlxp).
В телофазе расположившиеся у полюсов хромосомы деспирализуются и становятся плохо видимыми. Вокруг хромосом у каждого полюса из мембранных структур цитоплазмы формируется ядерная оболочка, в ядрах образуются ядрышки. Разрушается веретено деления. Одновременно идет деление цитоплазмы. Дочерние клетки имеют диплоидный набор хромосом, каждая из которых состоит из одной хроматиды (2n1хр).
28.
Особенности митоза у растений и у животных
Растительная клетка Центриолей нет. Звезды не образуются. Образуется клеточная пластинка. При цитокинезе не образуется борозды (перетяжки). Митозы происходят главным образом в меристемах. | Животная клетка Центриоли имеются Звезды образуются Клеточная пластинка не образуется При цитокинезе образуется борозда Митозы происходят в различных тканях и участках организма |
29.АМИТОЗ — прямое деление клетки путем перетяжки или инвагинации. Во время амитоза клетка находится в состоянии интерфазы: в ней не происходит конденсации хромосом и не образуется аппарат деления (ахроматиновое веретено, полюса). Амитоз не обеспечивает равномерного распределения хромосом между дочерними клетками, в связи с чем дочерние ядра и клетки часто имеют разный размер. Амитотическое деление ядра обычно не сопровождается цитокинезом, в результате образуются двуядерные и многоядерные клетки. Амитоз особенно свойствен полиплоидным и стареющим клеткам.
30.Клеточная пролиферация – увеличение числа клеток путем митоза, приводящее к росту ткани, в отличие от другого способа увеличения ее массы (например, отек). У нервных клеток пролиферация отсутствует.
Во взрослом организме продолжаются процессы развития, связанные с делением и специализацией клеток. Эти процессы могут быть как нормальными физиологическими, так и направленными на восстановление организма вследствие нарушения его целостности.
Значение пролиферации в медицине определяется способностью клеток разных тканей к делению, с делением клеток связан процесс заживления ран и восстановление тканей после хирургических операций.
Пролиферация клеток лежит в основе регенерации (восстановления) утраченных частей. Проблема регенерации представляет интерес для медицины, для восстановительной хирургии. Различают физиологическую, репаративную и патологическую регенерацию.
Физиологическая – естественное восстановление клеток и тканей в онтогенезе. Например, смена эритроцитов, кожного эпителия.
Репаративная – восстановление после повреждения или гибели клеток и тканей.
Патологическая – разрастание тканей не идентичных здоровым тканям. Например, разрастание рубцовой ткани на месте ожога, хряща - на месте перелома, размножение клеток соединительной ткани - на месте мышечной ткани сердца, раковая опухоль.
31. Политения - наличие в ядре некоторых соматических клеток гигантских многонитчатых (политенных) хромосом, превышающих в сотни раз обычные.
Полиплоидия — кратное увеличение числа наборов хромосом.
Эндомитоз(эндо- + митоз) — увеличение числа хромосом при отсутствии деления ядра или клетки.
Мозаицизм, мозаичность, одновременное присутствие в организме двух или нескольких сортов однотипных клеток, различающихся по генетической структуре — Генотипу и (или) по проявлению генов в Фенотипе.
32.Белки представляют собой полипептиды. Они состоят из большого чис