Человек - как специфический объект генетического анализа. Менделирующие признаки человека.
Человек как объект генетического исследования
Раздел генетики, изучающий наследственность и изменчивость у человека, называется антропогенетикой или генетикой человека. Генетика человека - это наука о наследственно обусловленных различиях между людьми. Из генетики человека выделяется медицинская генетика, исследующая механизмы развития наследственных болезней, возможности их лечения и профилактики. В настоящее время человек хорошо изучен морфологически, физиологически, биохимически, что способствует рассмотрению его генетических особенностей.
Изучение генетики человека связано с биологическими и социально-этическими особенностями.
Биологические особенности:позднее половое созревание, малочисленное потомство у одной пары родителей, в основном моноплодная беременность (исключение - близнецы); большой срок беременности, медленная смена поколений (20 - 25 лет), особенности кариотипа (большое число хромосом и др.), фенотипический полиморфизм.
Социально-этические особенности:невозможность направленных скрещиваний в интересах исследователя, отсутствие точной регистрации наследственных признаков (проводится не всегда и не везде), невозможность создания одинаковых условий жизни для всех людей.
У человека есть и преимущества перед другими генетическими объектами: способность воспринимать информацию и абстрактно мыслить;
значительное число и разнообразие мутаций; высокая численность популяций, доступных для изучения; возможность регистрации наследственных признаков в течение длительного времени; использование гибридизации соматических клеток для генетического анализа.
II. Методы изучения генетики человека
Генетика человека имеет как основные специфические методы исследования: генеалогический, близнецовый, цитогенетический, популяционно-статистический, онтогенетический, дерматоглифики, моделирования наследственных болезней и гибридизации соматических клеток; методы молекулярной генетики; так и дополнительные, применяемые совместно с основными (биохимический, микробиологический, иммунологический и др.).
1. Генеалогический метод основан на анализе наследования свойств и признаков человека по родословным. Метод был впервые предложен Ф. Гальтоном, условные обозначения (символы) - Юстом. Он включает два этапа: составление родословной и генеалогический анализ.
Составление родословной складывается из сбора сведений о семье, начиная с пробанда, и графического изображения родословной с использованием стандартных условных обозначений (символов). Генеалогический анализ позволяет установить: является ли признак наследственным; определить тип наследования (аутосомно-доминантный, аутосомно-рецессивный, сцепленный с полом) и генотипы членов родословной; прогнозировать вероятность проявления признака в потомстве. Все типы наследования имеют специфические особенности, характерные черты которых проявляются в родословных.
Анализ основан на генетических закономерностях моногенного наследования менделирующих признаков. Менделирующий признак дискретен, он детерминирован наличием своего аллеля и подчиняется закону расщепления. Дискретность признака можно оценить по морфологическим, физиологическим, биохимическим, клиническим, иммунологическим критериям. Большую работу по систематизации изученных наследственных признаков проводит М.Кьюсик и публикует их в виде каталога «Менделирующие признаки у человека». Генеалогический метод является эквивалентом гибридологического, который модифицирован в соответствии с социальными и биологическими особенностями человека; он наиболее часто применяется при медико-генетическом консультировании, изучении мутационного процесса, сцепленного наследования.
2. Близнецовый метод- это изучение пар близнецов путем установления внутрипарного сходства (конкордантности) и различия (дискордантности) между ними.
Близнецы - это дети, выношенные и рожденные одной матерью одновременно; чаще всего рождаются два близнеца. Они могут быть монозиготные и дизиготные. Монозиготные (однояйцевые, МБ) развиваются из одной зиготы (явление полиэмбрионии). Они одного пола и имеют одинаковый генотип. Дизиготные близнецы (двуяйцевые, ДБ) развиваются из двух зигот (явление полиовуляции); имеют разные генотипы; могут быть одного или разного пола.
В генетических исследованиях важно установить зиготность близнецов (моно- или дизиготные). Для этого используют полисимптомный метод - ряд критериев и четко наследуемых признаков (цвет глаз, волос, группы крови и др.), которые меньше всего подвержены влиянию среды. После установления зиготности сопоставляют близнецов одной пары по изучаемому (качественному или количественному) признаку.
Исследуемый признак может встречаться у обоих близнецов данной пары (пара конкордантна), либо у одного из близнецов (пара дискордантна). Близнецы в течение жизни могут находиться в одинаковых или разных условиях: изменчивость в группе МБ обусловлена средой, а у ДБ генотипом и средой.
Близнецовый метод используется для изучения соотносительной роли наследственности и среды в развитии признака (расчет коэффициента наследуемости), установления наследственного характера признака, выявления причин различной пенетрантности генов, оценки эффективности влияния внешних факторов на человека (лекарственных препаратов, методов обучения и воспитания).
3. Цитогенетический метод - метод микроскопического изучения наследственных структур клетки - хромосом. Он включает кариотипирование и определение полового хроматина.
а) Кариотипирование проводится для получения метафазных хромосом.
Кариотип - это диплоидный набор хромосом в соматических клетках на стадии метафазы, характерный для данного вида. Кариотип, представленный в виде диаграммы, называется идиограмма, кариограмма или хромосомный комплекс. Для кариотипирования наиболее удобным источником клеток являются лимфоциты (клетки периферической крови). Вначале получают достаточное количество делящихся клеток (стимуляция ФГА), а затем метафазные пластинки (для остановки деления на стадии метафазы используют колхицин) с раздельно лежащими хромосомами (гипотонический раствор). Препараты окрашивают и фотографируют, хромосомы вырезают и раскладывают. Для систематизации хромосом используют две стандартные классификации: Денверскую и Парижскую. В основу Денверской классификации положены два принципа: длина хромосом и их форма ( метацентрические, субметацентрические, акроцентрические), при этом используется метод сплошной окраски хромосом. По этой классификации все хромосомы разделены на семь групп, каждая пара хромосом имеет свой номер. Недостатком классификации является трудность в идентификации хромосом внутри группы. Парижская классификация основывается на дифференциальном окрашивании метафазных хромосом. Каждая хромосома имеет свой индивидуальный рисунок, четкую дифференциацию по длине на светлые и темные полосы - диски (сегменты). Разработана система обозначения линейной дифференциации хромосом (номер хромосомы, плечо, район, сегмент).
б) Определение Х-полового хроматина.
Половой хроматин (тельце Барра)- компактная темная глыбка, которая имеется в интерфазном ядре соматических клеток нормальных женщин. Половой хроматин представляет спирализованную Х-хромосому. Инактивация одной из Х-хромосом является механизмом, выравнивающим баланс генов в мужском и женском организме. Согласно гипотезе Марии Лайон, инактивация Х-хромосомы происходит на ранних стадиях эмбриогенеза (14 день), она носит случайный характер, причем инактивируются только длинные плечи Х-хромосомы. По числу глыбок полового хроматина можно судить о числе Х-хромосом (формула n+1, где n - число телец Барра). При любом числе Х-хромосом в активном состоянии будет только одна Х-хромосома.
Цитогенетические методы используются для диагностики хромосомных болезней (изменение числа и структуры хромосом), определения пола, изучения хромосомного полиморфизма членов популяций.
4. Методы пренатальной диагностикипредназначены для предупреждения рождения ребенка с патологией (первичная профилактика наследственных болезней). Выбор метода зависит от конкретной ситуации в семье и состояния беременной женщины.
а) Просеивающие (непрямые)направлены на обследование беременных женщин и позволяют выявить среди них группу риска. К этой группе методов относятся: исследование крови на альфа-фетопротеин (позволяет диагносцировать некоторые пороки развития плода - дефекты нервной трубки, анэнцефалию, врожденные дефекты кожи, а также хромосомные болезни), определение уровня хорионического гонадотропина (при болезни Дауна повышается), определение уровня несвязанного эстриола (при болезни Дауна снижается).
б) Прямые методынаправлены на обследование плода и делятся на неинвазивные (без хирургического вмешательства) и инвазивные (с нарушением целостности тканей плода). К неинвазивным относится ультразвуковое обследование, которое позволяет диагносцировать многоплодную беременность, анэнцефалию, дефекты костной системы, нервной трубки, атрезию желудочно-кишечного тракта. Прямые инвазивные методы: хорионбиопсия (взятие эпителия ворсинок хориона между 8 и 10 нед. беременности), плацентобиопсия (получение кусочков плаценты с 7 по 16 нед.), амниоцентез (процедура получения амниотической жидкости с небольшим количеством зародышевых клеток, проводится на 15-18 нед. беременности при определенных показаниях), биопсия кожи плода, кордоцентез (взятие крови из пуповины на 18-22 нед. беременности, фетоскопия (осмотр плода фиброоптическим эндоскопом, введенным через брюшную стенку матки, метод позволяет осмотреть плод, пуповину, плаценту и произвести биопсию). Полученный тем или иным способом материал подвергается цитогенетическому, биохимическому или молекулярно-генетическому исследованию. Результаты используются в медико-генетическом консультировании (дородовая диагностика) для диагностики молекулярных и хромосомных болезней, определения пола; выявления пороков развития.
5. Метод моделирования наследственных болезней. Биологическое моделирование базируется на законе гомологических рядов наследственной изменчивости Н.И. Вавилова, согласно которому генетически близкие роды и виды характеризуются сходными рядами наследственной изменчивости. У филогенетически родственных организмов проявляются однозначные реакции на определенные воздействия среды, в том числе на воздействие мутагенных факторов.
Используя мутантные линии животных, можно создавать модели наследственных болезней, которые могут быть у животных и человека (гемофилия, сахарный диабет, эпилепсия, ахондроплазия), изучать механизмы их возникновения, характер наследования и разрабатывать методы диагностики. Полученные данные с определенными поправками можно использовать для изучения наследственных болезней человека.
6. Онтогенетический (биохимический) метод.Метод основан на использовании биохимических методик для выявления метаболических нарушений в индивидуальном развитии организма, вызванных мутантным геном ( ген - фермент - признак ). Изменение фермента приводит к появлению в организме промежуточных продуктов обмена. Их определение в крови, моче используется для диагностики энзимопатий.
7. Популяционно-статистический метод. Метод основан на изучении генетического состава популяций. Он позволяет оценить вероятность рождения лиц с определенным фенотипом в данной группе населения, рассчитать частоту различных аллелей генов и генотипов по этим аллелям в популяции.
8. Методы молекулярной генетики.В молекулярной генетике применяется метод генной инженерии (выделение, клонирование генов, создание рекомбинантных молекул ДНК, введение их в клетку); метод полимеразных цепных реакций (ПЦР) - новосинтезированные цепи нуклеиновых кислот являются матрицей в следующих циклах репликации; метод секвенирования и др.
Используются и дополнительные методы в генетике: микробиологический - тест Гартри при фенилкетонурии (усиленный рост микроорганизмов при повышенном количестве фенилаланина в крови), иммунологическое определение антигенов групп крови и др.