Строение и функции клеточного ядра

Ядро есть в любой эукариотической клетке. Ядро может быть одно, или в клетке могут быть несколько ядер (в зависимости от ее активности и функции).

Клеточное ядро состоит из оболочки, ядерного сока, ядрышка и хроматина. Ядерная оболочка состоит из двух мембран, разделенных перинуклеарным (околоядерным) пространством, между которыми находится жидкость. Основные функции ядерной «оболочки: обособление генетического материала (хромосом) от цитоплазмы, а также регуляция двусторонних взаимоотношений между ядром и цитоплазмой.

Ядерная оболочка пронизана порами, которые имеют диаметр около 90 нм. Область поры (поровый комплекс) имеет сложное строение (это указывает на сложность механизма регуляции взаимоотношений между ядром и цитоплазмой). Количество пор зависит от функциональной активности клетки: чем она выше, тем больше пор (в незрелых клетках пор больше).

Основа ядерного сока (матрикса, нуклеоплазмы) — это белки. Сок образует внутреннюю среду ядра, играет важную роль в работе генетического материала клеток. Белки: нитчатые или фибриллярные (опорная функция), гетероядерные РНК (продукты первичной транскрипции генетической информации) и мРНК (результат процессинга).

Ядрышко — это структура, где происходят образование и созревание рибосомальных РНК (р-РНК). Гены р-РНК занимаю определенные участки нескольких хромосом (у человека это13—15 и 21—22 пары), где формируются ядрышковые организаторы, в области которых и образуются сами ядрышки. В метафазных хромосомах эти участки называются вторичными перетяжками и имеют вид сужений. Электронная микроскопия выявила нитчатый и зернистый компоненты ядрышек. Нитчатый (фибриллярный)— это комплекс белков и гигантских молекул-предшественниц р-РНК, которые дают в последующем более мелкие молекулы зрелых р-РНК. При созревании фибриллы превращаются в рибонуклеопротеиновые гранулы (зернистый компонент).

Хроматин получил свое название за способность хорошо прокрашиваться основными красителями; в виде глыбок он pacceян в нуклеоплазме ядра и является интерфазной формой существования хромосом.

Хроматин состоит в основном из нитей ДНК (40% массы хромосомы)~и белков (около 60%),которые вместе образуют нуклеопротеидный комплекс. Выделяют гистоновые (пять классов) и негистоновые белки.

Гистонам (40%) принадлежат регуляторная (прочно соединены с ДНК и препятствуют считыванию с нее информации) и структурная функции (организация пространственной структуры молекулы ДНК). Негистоновые белки (более 100 фракций, 20 % массы хромосомы):ферменты синтеза и процессинга РНК, репарации редупликации ДНК, структурная и регуляторная функции. Кроме этого,в составе хромосом обнаружены РНК, жиры, полисахариды, молекулы металлов.

В зависимости от состояния хроматина выделяют эухроматиновые и гетерохроматиновые учасгки хромосом. Эухроматин отличается меньшей плотностью, и с него можно производить считывание генетической информации. Гетерохроматин более компактен, и в его пределах информация не считывается. Выделя­ют конститутивный (структурный) и факультативный гетерохроматин.

Строение и функции полуавтономных структур клетки: митохондрий и пластид

Митохондрии (от гр. mitos — «нить», chondrion — «зернышко, крупинка») — это постоянные мембранные органеллы округлой или палочковидной (нередко ветвящейся) формы. Толщин — 0,5 мкм, длина — 5—7 мкм. Количество митохондрий в большинстве животных клеток — 150—1500; в женских яйцеклетках — до нескольких сотен тысяч, в сперматозоидах — одна спиральная митохонондрия, закрученная вокруг осевой части жгутика.

Основные функции митохондрий:

1)играют роль энергетических станций клеткок. В иих протекают процессы окислительного фосфорилирования (ферментативного окисления различных веществ с последующим накоплением энергии в виде молекул аденозинтрифосфата —АТФ);

2)хранят наследственный материал в виде митохондриальной ДНК. Митохондрии для своей работы нуждаются в белкаx, закодированных в генах ядерной ДНК, так как собственная митохондриальная ДНК может обеспечить митохондрии

лишь несколькими белками.

Побочные функции — участие в синтезе стероидных гормонов, некоторых аминокислот (например, глютаминовой).

Строение митохондрий

Митохондрия имеет две мембраны: наружную (гладкую) и внутреннюю (образующую выросты — листовидные (кристы) и трубчатые (тубулы)). Мембраны различаются по химическому составу, набору ферментов и функциям.

У митохондрий внутренним содержимым является матрике — коллоидное вещество, в котором с помощью электронного микроскопа были обнаружены зерна диаметром 20—30 нм (они накапливают ионы кальция и магния,запасы питательных веществ,например,гликогена).

В матриксе размещается аппарат биосинтеза белка органеллы:

2-6 копий кольцевой ДНК, лишенной гистоновых белков (как

у прокариот), рибосомы, набор т-РНК, ферменты редупликации,

транскрипции, трансляции наследственной информации. Этот аппарат

в целом очень похож на таковой у прокариот (по количеству,

структуре и размерам рибосом, организации собственного наследственного аппарата и др.), что служит подтверждением симбиотической концепции происхождения эукариотической клетки.

В осуществлении энергетической функции митохондрий активно участвуют как матрикс, так и поверхность внутренней мембраны, на которой расположена цепь переноса электронов (цитохромы) и АТФ-синтаза, катализирующая сопряженное с окислением фосфорилирование АДФ, что превращает его в АТФ.

Митохондрии размножаются путем перешнуровки, поэтому при делении клеток они более или менее равномерно распределяются между дочерними клетками. Так, между митохондриями клеток последовательных генераций осуществляется преемственность.

Таким образом, митохондриям свойственна относительная автономность внутри клетки (в отличие от других органоидов). Они возникают при делении материнских митохондрий, обладают собственной ДНК, которая отличается от ядерной системой синтеза белка и аккумулирования энергии.

Пластиды

Это полуавтономные структуры (могут существовать относительно автономно от ядерной ДНК клетки), которые присутствуют в растительных клетках. Они образуются из пропластид, которые имеются у зародыша растения. Отграничены двумя мембранами.

Выделяют три группы пластид:

1) лейкопласты. Имеют округлую форму, не окрашены и содержат питательные вещества (крахмал);

2) хромопласты. Содержат молекулы красящих веществ и присутствуют в клетках окрашенных органов растений (плодах вишни, абрикоса, помидоров);

3) хлоропласты. Это пластиды зеленых частей растения (листьев, стеблей). По строению они во многом схожи с митохондриями животных клеток. Наружная мембрана гладкая, внутренняя имеет выросты — ламелосомы, которые заканчива­ются утолщениями — тилакоидами, содержащие хлорофилл. В строме (жидкой части хлоропласта) содержатся кольцевая молекула ДНК, рибосомы, запасные питательные вещества (зерна крахмала, капли жира).

6. Строение и функции лизосом и пероксисом. Лизосомы

Лизосомы(от гр. lysis — «разложение, растворение, распад» и soma — «тело») — это пузырьки диаметром 200-400 мкм. (обычно). Имеют одномембранную оболочку, которая снаружи иногда бывает покрыта волокнистым белковым слоем. Содержат набор ферментов (кислых гидролаз), которые осуществляют при низких значениях рН гидролитическое (в присутствии воды) расщепление веществ (нуклеиновых кислот, белков, жиров, углеводов). Основная функция — внутриклеточное переваривание различных химических соединений и клеточных структур.

Выделяют первичные (неактивные) и вторичные лизосомы (в них протекает процесс переваривания). Вторичные лизосомы образуются из первичных. Они подразделяются на гетеролизосомы и аутолизосомы.

В гетеролизосомах (или фаголизосомах) протекает процесс переваривания материала, который поступает в клетку извне путем активного транспорта (пиноцитоза и фагоцитоза).

В аутолизосомах (или цитолизосомах) подвергаются разрушению собственные клеточные структуры, которые завершили свою жизнь.

Вторичные лизосомы, которые уже перестали переваривать материал, называются остаточными тельцами. В них нет гидролаз, содержится непереваренный материал.

При нарушении целостности мембраны лизосом или при заболевании клетки гидролазы поступают внутрь клетки из лизосом и осуществляют ее самопереваривание (автолиз). Этот же процесс лежит в основе процесса естественной гибели всех клеток (апоптоза).

Микротельца

Микротельца составляют сборную группу органелл. Они представляют собой пузырьки диаметром 100—150 нм, отграниченные одной мембраной. Содержат мелкозернистый матрикс и нередко белковые включения.

К таким органеллам можно отнести и пероксисомы. В них содержатся ферменты группы оксидаз, которые регулируют образование пероксида водорода (в частности, каталаза).

Так как пероксид водорода — токсичное вещество, оно под­вергается расщеплению под действием пероксидазы. Реакции образования и расщепления пероксида водорода включены во многие метаболические циклы, особенно активно протекающие в печени и почках.

Поэтому в клетках этих органов количество пероксисом достигает 70—100.

7. Строение и функции эндоплазматического ретикулума, комплекса Гольджи

Эндоплазматическая сеть.

Эндоплазматический ретикулум (ЭПС) система сообщающихся или отдельных трубчатых каналов и уплощенных цистерн, распо­ложенных по всей цитоплазме клетки. Они отграничены мембранами (мембранными органеллами). Иногда цистерны имеют расширения в виде пузырьков. Каналы ЭПС могут соединяться с поверхностной или ядерной мембранами, контактировать с комплексом Гольджи.

В данной системе можно выделить гладкую и шероховатую (гранулярную) ЭПС.

Шероховатая ЭПС

На каналах шероховатой ЭПС в виде полисом расположены рибосомы. Здесь протекает синтез белков, преимущественно проду­цируемых клеткой на экспорт (удаление ич клегки), например, сек­ретов железистых клеток. Здесь же происходят образование липи-дов и белков цитоплазматической мембраны и их сборка. Плотно упакованные цистерны и каналы гранулярной ЭПС образуют слоистую структуру, где наиболее активно протекает синтез белка. Это место называется эргастоплазмой.

Гладкая ЭПС

На мембранах гладкой ЭПС рибосом нет. Здесь протекает в основном синтез жиров и подобных им веществ (например, сте­роидных гормонов), а также углеводов. По каналам гладкой ЭПС также происходит перемещение готового материала к месту его упаковки в гранулы (в зону комплекса Гольджи). В печеночных клетках гладкая ЭПС принимает участие в разрушении и обезвре­живании ряда токсичных и лекарственных веществ (например, барбитуратов). В поперечно-полосатой мускулатуре канальцы и цистерны гладкой ЭПС депонируют ионы кальцин.

Комплекс Гольджи

Пластинчатый комплекс Гольджи что упаковочный центр клетки. Представляет собой совокупность дик тиосом (от несколь­ких десятков до сотен и тысяч па одну клетку). Дикгиосома— стопка из 3—12 уплощенных цистерн овальной формы, по краям которых расположены мелкие пузырьки (везикулы). Более круп­ные расширения цистерн дают вакуоли, содержащие резерв воды в клетке и отвечающие за поддержание тургора. Пластинчатый комплекс дает начало секреторным вакуолям, и которых содержатся вещества, предназначенные для вывода из клетки. 11ри этом просекрет, поступающий в вакуоль из зоны синтеза, (')ПС, митохондрии, рибосомы), подвергается здесь некоторым химическим превращениям.

Комплекс Гольджи дает начало первичным лизосомам. В диктиосомах также синтезируются полисахариды, гликопротеиды и гликолиииды, которые затем идут на построение цитоплазматических мембран.

Наши рекомендации