Лекция 2. Тема: Цитогенетика и материальные основы наследственности.
Характеристика кариотипов
Каждому виду организмов свойствен определенный кариотип. Кариотипы организмов могут содержать от 2-х хромосом у малярийного плазмодия до 1000 - у радиолярий. Примеры кариотипов приведены на рисунке 4.
Рисунок 4. Кариотипы разных видов растений и животных, изображенные в одном масштабе: 1 — диатомовая водоросль (Сосconcis placenttila); 2 — муха (Drosophila melanogaster); 3 — сложноцветное (Crepis capillaris); 4 — саранчовое (Gomphocerus rufus); 5 — жук (Gerris lateralis).
При изучении кариотипа парные (гомологичные) хромосомы располагают рядом. Примеры диплоидного числа хромосом у некоторых животных и растений приведены в таблице 1-2.
Таблица 1. Животные
Plasmodium malariae | малярийный плазмодий | |
Hydra vulgaris | гидра пресноводная | |
Lumbricus terrestris | дождевой червь | |
Bombyx niori | тутовый шелкопряд | |
Pieris brassicae | капустная белянка | |
Cyprinus carpio | Сазан | |
Perca fluviatilis | Окунь | |
Triturus vulga | Тритон | |
Lacerta agili | ящерица прыткая | |
Columba livia | Голубь | |
Callus gallus | курица домашняя | |
Lepus cuniculus | Кролик | |
Bos taurus | крупный рогатый скот | |
Anthropopithecus sp. | Шимпанзе | |
Homo sapiens | Человек |
Таблица 2. Растения
Abies, Picea, Pinus, Larix | пихта, ель, сосна, лиственница | |
Cucumis sativus | Огурец | |
Ribes rubruni | красная смородина | |
Mains silvestris | Яблоня | 34, 51 |
Quercus robur | дуб обыкновенный | |
Soianum tuberosum | Картофель | |
Secale cereale | рожь | 14, 28 |
Если сравнивать число и размер хромосом у человека и у других видов организмов, то можно увидеть огромные отличия. Например, у коровы, размер генома которой примерно равен геному человека, имеется 60 пар хромосом. У шпорцевой лягушки содержится всего 18 хромосом, но даже самые маленькие из них больше, чем самые крупные хромосомы человека. У птиц, наоборот, число хромосом достигает 40 и более и все они очень небольшие по размерам. Таким образом, количество хромосом в кариотипе не связано с уровнем организации животных и растений: примитивные формы могут иметь большее число хромосом, чем высокоорганизованные, и наоборот. Сравниваются кариотипы не только по числу хромосом, но и по массе ДНК. Применяемая единица измерения – пикограмм. 1 пг = 10 -12 г.
Считается, число и морфология хромосом в отдельных случаях могут служить показателем филогенетического родства видов. На этом принципе строится кариосистематика.
Хотя, сходство кариотипа указывает на родственные связи организмов, однако, и в пределах вида генетический материал претерпевает изменения (например, перекомбинации при мейозе), поэтому потомство отличается от родителей, хотя и несёт только генетические особенности, заложенные в хромосомах родителей.
Разнообразие кариотипов связано также с тем, что у некоторых организмов имеются добавочные к диплоидному набору хромосомы. Так, у ряда животных помимо крупных хромосом обнаружены очень мелкие «точечные» хромосомы. В отличие от хромосом нормального диплоидного набора, которые принято называть А-хромосомы, добавочные хромосомы назвали В-хромосомы. В-хромосомы часто называют необязательными, и долгое время данный тип хромосом оставался загадкой. В настоящее время В-хромосомы обнаружены у 80 видов животных и 256 видов растений (кукуруза, рожь, пресноводные тубеллярии, некоторые насекомые).
Впервые, В-хромосомы были обнаружены Эрнестом Вильсоном в 1905 г. у клопа Matepodius terminalis.
Свойства В-хромосом:
1. По размерам меньше хромосом основного набора;
2. Более интенсивно окрашиваются, т.к. имеют больше хроматина;
3. Присутствие не обязательно; наличие (отсутствие) в кариотипе не сказывается на фенотипе (однако их накопление в количестве больше 10, может вызывать депрессию роста, снижение плодовитости, различные аномалии в свойствах и признаках);
4. Не гомологичны А-хромосомам, в анафазе мейоза часто не наблюдается их равномерного распределения, поэтому в дочерние клетки может попасть неравномерное их число, что вызывает изменчивость кариотипа по числу В-хромосом (у кукурузы Zea mays их количество в клетке может варьировать от 1 до 34.);
5. В-хромосомы не содержат никакого генетического материала, т.е. не имеют экспрессирующихся генов с существенными для жизни организма функциями;
6. Для некоторых видов растений характерно явление соматической элиминации, т.е. В-хромосомы, например у растений, могут неизменно обнаруживаться в микроспороцитах, но не в клетках корня;
7. Обладают способностью к увеличению своего количества в последующих поколениях при половом размножении;
8. Как правило, В-хромосомы встречаются у малохромосомных видов.
Другая разновидность хромосом обнаруживается в кариотипе самок высших животных, они получили название тельца Барра. Тельца Барра – это половой, или Х-хроматин (вторая, неактивная половая хромосома). Величина телец Барра около 1 мкм. Они прокрашиваются всеми основными ядерными красителями более интенсивно, чем остальные хроматиновые структуры ядра. Тельца Барра наблюдаются в интерфазных ядрах соматических клеток самок плацентарных, включая человека.
Локализация Х-хроматина в ядре различна. В большинстве тканей он находится на внутренней поверхности ядерной оболочки и может иметь треугольную, плоско-выпуклую, трапециевидную, U-образную или гантелевидную форму. В веретеновидных и палочковидных ядрах Х-хроматин располагается на одном из полюсов ядра. Реже Х-хроматин располагается на ядрышке или в нуклеоплазме, при этой локализации он обладает сферической формой и трудно отличим от других хромоцентров, имеющих такой же размер, но неспецифических для пола.
Диплоидное число хромосом
Рис. 1. Распределение видов по числу хромосом в различных таксонах рыб. а - Cyprinidae; б - Characidae; в - Lebiasinidae (Cypriniformes); г — Cyprinodontiformes (карпозубообразные). Полиплоидные виды исключены; для полиморфных видов указано максимальное из встречающихся число хромосом.
Интересно, что в некоторых группах карповых рыб, в частности у американских представителей рода Notropis, константность хромосомных наборов наблюдается, несмотря на значительную морфоэкологическую дивергенцию видов. Именно в этой процветающей группе рыб могли сохраниться полиплоидные мутанты, получавшие преимущество в конкурентной борьбе с обычными диплоидными формами. Полиплоиды возникли в трех семействах - Cyprinidae, Cobitidae (Вьюновые) и Catostomidae (Чукучановые). Это был несомненно важный этап в прогрессивной эволюции костистых рыб третичного периода. Среди карповых полиплоидными являются многие виды (не менее семи) в подсем. Barbinae и два или три - в подсем. Cyprininae. Карп Cyprinus carpio, золотая рыбка Carassius auratus и двуполая форма серебряного карася С. auratus gibelio имеют удвоенные наборы хромосом (2n = 98-104), однополые популяции С. auratus gibelio - утроенные наборы (3n около 150). Диплоидные и триплоидные формы сосуществуют среди нескольких подвидов серебряного карася в Японии, а подвид С. a. langsdorfi представлен даже тремя формами, имеющими в наборе 100, 156 и 206 хромосом. У обыкновенного карася из Дуная С. carassius кариотип состоит из 50 хромосом; эти данные, однако, требуют проверки. В подсем. Barbinae крупные виды (В. barbus, В. brachicephalus, В. mertdlonalis, В. tauricus, Tor putitora и другие) являются тетраплоидами (по происхождению); большое число мелких форм (рыбы из рода Puntius, ранее относившиеся к роду Barbus, и другие) - диплоидами. В двух подсемействах карповых рыб полиплоидизация произошла, очевидно, независимо. У вьюновых (сем. Cobitidae) найдено, наряду с диплоидами, несколько многохромосомных видов - Botia macracantus, В. modesta, Mlsgurnus fossilis. Наряду с этим у целого ряда видов обнаружены диплоидно-тетраплоидные и даже диплоидно-триплоидно-тетраплоидные комплексы:
Cobitis bivae . . . . . наряду с обычными формами с 2n = 48 имеются отдельные расы
с 2n = 96 (Sezaki, Kobayashi, 1978; Kimizuka, Kobayashi, 1983);
С. taenia………. 48(50), 72-75, 86, 94, 96-100хромосом (Kobayashi, 1976; Ueno et
al., 1980; Васильев, Васильева, 1982);
Misgurnus anguillicaudatus…….48(50) и 100 хромосом (Raicu, Taisescu, 1972; Ojima,
Takai, 1979).
Размеры эритроцитов у многохромосомных видов увеличены, также у них повышено и содержание ДНК в ядре. Полиплоидное происхождение карпов, карасей и некоторых вьюновых рыб подтверждается данными об увеличенном количестве у них дуплицированных локусов.
У всех 14 исследованных видов чукучановых рыб (Catostomidaе) в кариотипе насчитывается около 100 хромосом, содержание ДНК на геном повышено. Полиплоидизация генома у чукучанов, а также и у некоторых карповых рыб произошла, очевидно, позднее чем в середине третичного периода, т. е. более 50 млн. лет назад. Полиплоидные вьюновые рыбы, по-видимому, значительно моложе.
В эволюции ряда семейств карпообразных рыб прослеживается довольно четко и тенденция к уменьшению хромосомных наборов. Так, в семействе лебиасовых (Lebiasinidae) число хромосом у некоторых видов уменьшено до 22-30 (см. рис. 1). В этом случае связь между числом хромосом и специализацией более ясна, чем у лососевых.
В некоторых семействах (Characidae, Anostomidae и др.) многие виды имеют увеличенное число хромосом (более 50), при этом нередко хромосомы представляют собою двуплечие метацентрические элементы. При росте числа хромосом у харацид возрастало и количество ДНК. Таким образом, в отряде карпообразных эволюция кариотипа происходила с разной скоростью и в различных направлениях, и это привело к большой дивергенции хромосомных наборов.
Очень гетерогенным по кариотипам является отряд сомообразных (Siluriformes). У многих видов диплоидное число хромосом превышает 54-60, а некоторые многохромосомные виды сем. Сlаriidаe и Callichthyidae (Панцирные сомы) есть основания считать полиплоидами. Так, в роде Coridorus (Callichthyidae) имеется ряд видов с кратным увеличением числа хромосом и числа плеч.
Число хромосом, 2n | Число хромосом, 2n | ДНК/n, (пг) | |
Coridorus arcuatus, С. axelrodi и др. | 4.1 (1 вид)* | ||
С. melanistus | - | ||
С. myersi | - | 2,3 | |
С. metae | - | ||
С. julii | 4,2 | ||
С. aeneus | 4,4 |
* Возможна ошибка в видовом диагнозе (Scheel, устн. сообщ.).
Содержание ДНК оказалось повышенным у видов с увеличенным числом хромосом.
Род Noturus (сем. Ictaluridae – Кошачьи сомы) по числу хромосом очень изменчив, диплоидные наборы у более чем 20 видов варьируют в пределах от 54 до 40 хромосом. Предполагается, что уменьшение числа хромосом происходило путем центрических слияний, перицентрических инверсий и других перестроек независимо и параллельно в двух филетических ветвях этого рода. Род Ictalurus в этом же семействе, наоборот, характеризуется большими хромосомными наборами (от 48 до 62).
Обширный и хорошо изученный отряд карпозубообразных (Cyprinodontiformes) может служить ярким примером связи между числом хромосом и специализацией. Предполагаемое исходное число хромосом (48) в сем. Cyprinodontidae сохранилось только у 45 % видов, у остальных оно уменьшено вплоть до наборов с 18-20 хромосомами (см. рис. 1). Сходная картина наблюдается и в сем. Гудеевые (Goodeidae). Среди живородящих Poeciliidae, наоборот, преобладает набор с 48 хромосомами.
В сем. Cyprinodontidae мы встречаемся с различиями в степени редукции числа хромосом между родами, с межвидовой и, наконец, внутривидовой изменчивостью кариотипов. В пределах многих политипических родов наблюдается одна и та же закономерность - наличие большего или меньшего числа видов с редуцированным набором. Приведем примеры такой изменчивости (по: Scheel, 1972).
Род | Встречающиеся диплоидные числа у разных видов (в скобках - число видов) |
Fundulus | 48(15); 46(4); 44(1); 40(2); 34(1); 32(1) |
Rivulus | 48(5); 46(3); 44(2); 40(1) |
Aplocheilus | 50 (4); 48 (7); 42 (1); 40 (2); 38(1), 34 (2) |
Notobranchius | 44(1); 38(3); 36(3); 18(1) |
Aphyosemion | 46(2); 42(4); 40(19); 38(4); 36(4); 34(3); 32(1); 30(3); 28(2); 22(2); 20(3); 18(1) |
По мере уменьшения числа элементов увеличивается количество крупных метацентриков (рис. 2); основным механизмом редукции надо считать центрические слияния. Большую роль играли и перицентрические инверсии.
У некоторых видов внутривидовая изменчивость кариотипов не уступает межвидовой. Так, для трех видов Aphyosemion получены следующие ряды кариотипов.
A. bivittatum 40, 38, 36, 34, 30, 26
A. calliurum 40, 38, 36, 34, 32, 30, 26, 22, 20
A. earneronense .... 34, 32, 30, 28, 26, 24
Вариация эта носит систематический характер, разновидности из разных мест имеют разное число хромосом. Анализируя вид A. bivittatum, Шеел отмечает, что кариотипы с наборами из 40 или 38 хромосом характерны для наиболее «генерализованных» разновидностей. В процессе заселения водоемов (миллионы лет назад) в обширных тропических лесах исходные формы должны были быть достаточно гибкими и, следовательно, иметь генотипы с максимальной изменчивостью (слабым сцеплением генов).
Рис. 2. Гаплоидные наборы хромосом различных рас Aphyosemion calliurum, схема (по: Scheel, 1972а). а - n =20; б - n = 17; в - n = 13; г - n = 10.
Впоследствии, после проникновения в те же маленькие, очень сильно изолированные водоемы других видов Aphyosemion, выгодной cтала максимальная специализация и ограничение изменчивости. В ходе отбора получали преимущество особи с малым числом хромосом, т. е. с более устойчивыми генными сочетаниями. Такой же процесс специализации и параллельного уменьшения числа хромосом происходил и при расселении A. calliurum. Сохранению каждого из видов способствовало наличие разновидностей с более пластичным генотипом, т. е. с меньшей степенью сцепления, с большим числом хромосом. При случайном вымирании сильно специализированных форм освободившиеся экологические ниши могут занимать эти достаточно пластичные разновидности.
Этот замечательный пример своеобразной адаптивной стратегии вида показывает, что у зубастых карпов в каждом отдельном случае эволюция кариотипа определялась равновесием нескольких сил. Главными из них являлись выгода специализации и в то же время необходимость сохранения достаточной пластичности. Излишне специализированные разновидности и виды, а может быть и роды, вымирали при неблагоприятных изменениях условий существования.
В одном из родов сем. Poeciliidae - Poeciliopsis - имеются триплоидные виды и разновидности с 72 хромосомами, возникшие, очевидно, в результате гибридизации и гиногенеза. Триплоиды могут появляться и при некоторых скрещиваниях видов из рода Poecilia.
Из остальных отрядов рыб лучше других исследованы некоторые семейства окунеобразных(Perciformes). В эту гетерогенную группу входят семейства с весьма различным уровнем пластичности и специализации. Широкая приспособляемость характерна, в частности, для окуневых (Percidae) и центрарховых (Centrarchidae), и мы видим, что в этих семействах почти все виды имеют 48 хромосом. Род Etheostoma (Этеостома, Дартеры) в семействе окуневых является исключением; многочисленные виды этого рода сильно специализированы, но у всех у них число хромосом остается неизменным (2n = 48). Вместе с тем такие семейства, как бычки (Gobiidae), хромисты (Cichlidae) и лабиринтовые (Anabantidae), включают много специализированных форм, и в этих семействах мы находим довольно много случаев численного уменьшения кариотипов.
Об отрядах скорпенообразных, камбалообразных, иглобрюхообразных и некоторых других таксонах наиболее продвинутых костистых рыб сказать что-нибудь трудно из-за малочисленности наблюдений. Отметим лишь, что у рыб всех этих отрядов, а также у колюшек, тенденция к уменьшению числа хромосом проявляется очень отчетливо.
Таким образом, сопоставление всех до сих пор исследованных рыбообразных и рыб позволяет сделать вывод о несомненном уменьшении как числа хромосом, так и количества ДНК на геном по мере продвижения от примитивных к более высокоорганизованным группам. Среди наиболее примитивных групп небольшие хромосомные наборы имеют миксины и двоякодышащие рыбы, но для них характерен высокий уровень содержания ДНК. В разных таксонах рыб наблюдается и увеличение и уменьшение числа хромосом. Редукцию хромосом, очевидно, нельзя приписать случайной фиксации робертсоновских транслокаций - более вероятным является отбор, диктуемый условиями существования той или другой группы и характером приспособлений рыб к окружающей среде. Уменьшение числа хромосом в ряде случаев связано, несомненно, со специализацией видов, требующей ограничения комбинаций генетического материала. Эта связь, однако, не абсолютна: изменение числа хромосом и количества ДНК в ядре может быть результатом приспособления к специфическим условиям существования и, в частности, необходимости изменения уровня метаболизма.
Главную роль в эволюции кариотипа рыб играли хромосомные перестройки типа центрических слияний (и разделений) и перицентрических инверсий. Можно предполагать, по аналогии с другими организмами, что в этом процессе большое участие принимают парацентрические инверсии, тандемные дупликации и мелкие нехватки, но пока мы не располагаем адекватными методами их обнаружения у рыб.
Полиплоидия неоднократно имела место в эволюции рыб. Доказанными можно считать случаи независимого возникновения полиплоидов в семействе осетровых, отрядах лососеобразных и карпообразных рыб и в меньшей степени в отряде сомообразных. Не исключено, что полиплоидия имела место и при эволюционном развитии некоторых других таксонов. Возможность выживания полиплоидов у рыб обусловлена наличием у многих из них сравнительно простого типа генетического определения пола, а у некоторых и полного отсутствия половых хромосом.
Эволюция хромосомного аппарата у двоякодышащих рыб представляет совершенно исключительный пример многократного увеличения хромосомного материала и параллельного увеличения размеров клеток. Этот пример может оказаться полезным при исследовании путей проникновения водных организмов на сушу.
Имеются указания на существование различий в числе хромосом между пресноводными и морскими рыбами, а также между глубоководными и прибрежными формами (Никольский, 1973; Никольский, Васильев, 1973). Предположение об увеличенном числе хромосом у пресноводных рыб вызывает большие сомнения, в целом ряде отрядов или в отдельных семействах пресноводные виды характеризуются сильно редуцированным числом хромосом, морские и проходные, наоборот, увеличенным. Ярким примером наличия редуцированных наборов могут служить, в частности, пресноводные зубастые карпы. Меньше сомнений вызывают данные о большем числе хромосом у арктических рыб, но и в этом случае не следует забывать о главном факторе дивергенции кариотипов рыб - степени их специализации, несомненно большей у обитателей тропиков и субтропиков.
В работе В. П. Васильев (1983) на большом статистическом материале показал наличие существенной положительной корреляции между кариологической изменчивостью внутри определенного таксона и степенью изоляции видов. Интересна и обнаруженная им отрицательная корреляция между кариотипическим разнообразием и плодовитостью рыб. Таким образом, дивергенция кариотипов рыб усиливается при наличии изоляции и сниженной плодовитости.
Дополнительно
Пример внутривидовой изменчивости по кариотипам можно рассмотреть на примере видового многообразия в подотряде Нототениевые.
В настоящее время известны хромосомные наборы 61 вида всех 8 семейств Notothenioidei, т.е. почти у половины (49%) всех видов подотряда. Изменчивость числа хромосом весьма существенна, о чем свидетельствует большой диапазон диплоидного числа хромосом от 2n=20 до 2n=58; NF=40–88.
В качестве предкового кариотипа у костистых рыб рассматривается кариотип с диплоидным числом хромосом равным 2n=48, при наличии только акроцентрических хромосом. В отряде Perciformes (Окунеобразных), к которому принадлежит подотряд Notothenioidei, число 2n=48 обнаружено у 73% всех кариологически исследованных видов. Предковый кариотип (2n=48, NF=48) среди нототениоидных рыб отмечен у 3 видов из двух разных семейств: Bovictidae - Щекороговые (C. gobio и B. angustifrons) и Bathydraconidae - Антаркти́ческие плосконо́сы, или батидра́ковые, (P. breviceps) (Природина 1986, 1990). Кариотипы этих видов одинаковы по числу хромосом и хромосомных плеч, что соответствует предковому состоянию кариотипа костистых рыб.
Такой кариотип, состоящий только из одноплечих элементов, можно назвать неспециализированным и недифференцированным. Более продвинутыми и специализированными считаются кариотипы, которые состоят из нескольких морфологических групп хромосом (мета-, субмета-, субтело- и акроцентрические хромосомы) и имеют число плеч более 48 (рис. 3).
Рис. 3. Кариограммы некоторых видов подотряда Notothenioidei: A – Cottoperca gobio Steindachner (Bovictidae)- Щекороговые, 2n=48, NF=48; B – Pleuragramma antarcticum Boulenger (Nototheniidae), 2n=48, NF=88: m – метацентрики, a – акроцентрики; C – Pseudotrematomus nicolai (Nototheniidae), 2n=58, NF=84; D – Prionodraco evansii Regan (Bathydraconidae), 2n=20, NF=40.
В целом, изменения кариотипа внутри подотряда Нототениевых шло в 3-х направлениях:
1. изменение морфологии хромосом без изменения их числа;
2. изменение количества хромосом в сторону уменьшения;
3. изменение количества хромосом в сторону увеличения.
Направление 1 представляет группа видов со стабильным числом хромосом 2n=48; кариотипы различаются только по морфологии хромосом, выражающейся в числе их плеч. К этому направлению специализации относятся 34 вида из 6 семейств: Eleginopidae - Патагониевые (1 вид), Pseudaphritidae - Конголлиевые (1 вид), Harpagiferidae - Антаркти́ческие рога́тки, или харпаги́феровые (2 вида), Channichthyidae - Белокровные рыбы, (13 видов), Nototheniidae (13 видов), Bathydraconidae- Батидраковые (4 вида). Внутри этой группы процесс кариологических преобразований (при постоянном числе хромосом) происходит в направлении увеличения числа двуплечих хромосом, а, следовательно, и числа хромосомных плеч от NF=50 до NF=88 (рис. 4).
Морфологические преобразования, вероятно, связаны с перицентрическими инверсиями, при которых участки хромосом занимают инвертированное положение, или процессом накопления генетического материала (гетерохроматина) на плечах хромосом.
Рис. 4. Направления кариотипической специализации в подотряде Notothenioidei. (В.П. Природина)
Направление 2 связано с процессом увеличения числа хромосом, которое наблюдается у 3 видов из семейства Nototheniidae: 2n=50 (2 вида), 2n=58 (1 вид). Увеличение числа хромосом – довольно редкое явление, отмечено у рыб некоторых семейств карпообразных (Сypriniformes) (Кирпичников 1979). Это, вероятно, происходит за счет изменения хромосомной организации – центрических разделений хромосом.
Направление 3. Процесс уменьшения числа хромосом в сравнении с предковым кариотипом наблюдается у семейства Artedidraconidae - Борода́тковые (8 видов) и Nototheniidae (4 вида), 2n=46.
У видов, чья эволюционная судьба связана с дальнейшим уменьшением числа хромосом путем их центрического слияния, происходит элиминация хромосом. Кариотип, которому в процессе элиминации хромосом присуще наличие двуплечих и одноплечих хромосом, называется малохромосомным несимметризированным. Виды, имеющие такой кариотип, отмечены в семействах Nototheniidae (2 вида) и Bathydraconidae (2 вида) Они имеют хромосомные наборы 2n=28–38.
Дальнейшее уменьшение числа хромосом приводит к образованию малохромосомных кариотипов, состоящих только из двуплечих хромосом (2n=20–24) и имеющих число хромосомных плеч, равное удвоенному числу 2n, т.е. NF=40–48. Уменьшение числа хромосом происходит путем робертсоновских транслокаций, что приводит к образованию максимально симметризированного кариотипа, состоящего только из двуплечих элементов. К этой группе принадлежат 4 вида из семейства Nototheniidae и только 1 вид (Prionodraco evansi) из семейства Bathydraconidae, в кариотипе которого отмечено самое низкое число хромосом из изученных видов подотряда (2n=20, NF=40). Такое состояние всех хромосом следует рассматривать как «крайнюю» специализацию кариотипа, т.е. в этом случае процесс морфологической специализации кариотипа происходил путем центрических слияний, которые и обусловили уменьшение числа хромосом и образование метацентрических элементов в кариотипе. Кариотип, состоящий только из метацентриков, показывает завершенность эволюционных преобразований кариотипа, идущих путем центрических слияний. Уменьшенное число хромосом и их метацентрическое состояние у видов родов Notothenia, Pseudotrematomus -Трематомовые и Prionodraco - батидра́ковые показывает, что процесс эволюционных изменений кариотипа достиг своей максимальной продвинутости; что характеризует эти виды как высоко специализированные (рис. 5).
При сравнении всех направлений эволюционных преобразований кариотипа следует отметить, что в подотряде Notothenioidei наиболее распространены преобразования кариотипа, связанные с изменением морфологии хромосом, без изменения их числа. Такой тип эволюционных преобразований свойствен 77% общего числа кариологически изученных видов.
Таким образом, на примере подотр. Нототениевых видно, что большое таксономическое разнообразие сопряжено и с большим разнообразием кариотипов , как в семействах Nototheniidae и Bathydraconidae.
Рисунок 5. Антарктические плосконосы: Прионодрако Эванса (Prionodraco evansii). Антаркти́ческие плосконо́сы, или батидра́ковые, или плосконо́совые (лат. Bathydraconidae) — семейство морских автохтонных антарктических донных рыб
Хромосомы прокариот
В отличие от эукариот хромосома бактериальной клетки содержит молекулу ДНК, имеющую не линейную, а кольцевую структуру. Хромосома прокариот образована двухцепочечной ДНК размером от 1000 до 2000 мкм. Поскольку у бактерий нет настоящего ядра, то их генетический материал организован в виде ядерноподобной структуры (нуклеоида), располагающегося в цитоплазме клетки. Каждому нуклеоиду соответствует одна хромосома, т.е. бактерии являются гаплоидными организмами.
Как и у вирусов, линейные размеры генетического материала бактерий явно не соответствуют размерам структурного образования, в котором он находится. Так, например, типичные клетки E.coli имеют форму палочек длиной 1 — 5 мкм и толщиной 0,4 — 0,8 мкм. Это несоответствие также устраняется путем суперспирализации молекулы ДНК, формирующей хромосому нуклеоида.
Лекция 2. Тема: Цитогенетика и материальные основы наследственности.
План лекции
1.Хромосомное и нехромосомное наследование
2.Открытие хромосом. Строение хромосом эукариот (макростукрура)
3. Хромосомная теория наследственности Т. Х. Моргана
4. Химический состав и микроструктура хромосом. Характеристика политенных хромосом и хромосом типа «ламповых щеток».
5.Характеристика кариотипа. Виды хромосом (А и В хромосомы, тельца Барра).
6.Хромосомные мутации
7.Кариотипы рыб и методы их исследования
8. Особенности строения хромосом у прокариот
Согласно положению клеточной теории (Рудольф Вирхов), новая клетка может появиться только из клетки. Новое поколение при делении клетки от своих родителей получает все признаки, формирующие его организм. Изучением строения материальных структур наследственности и изменчивости и их функционированием занимается особый раздел генетики – цитогенетика.
Основной предмет исследований цитогенетики — хромосомы, их организация, функционирование и наследование. При классическом цитогенетическом анализе проводят одновременно цитологическое (микроскопическое) исследование хромосом и генетический анализ наследования признаков. Цитогенетику подразделяют на общую, в которую включают также популяционную и радиационную цитогенетику, и частную — цитогенетику растений, цитогенетику животных и цитогенетику человека (в том числе медицинскую цитогенетику).
Однако, в передаче наследственных признаков участвуют не только хромосомы, но и другие клеточные структуры. Такое наследование называется внехромосомной (цитоплазматической) наследственностью и ее изучает раздел генетики, называемый клеточной генетикой. При изучении материальных основ наследственности используются не только методы генетики и цитологии, но, и методы молекулярной биологии, цитохимии, кариологии и др.
Роль хромосом в наследовании признаков была определена далеко не сразу, да и установление того факта, что в каждой клетке живого организма обязательно присутствие хромосом заняло продолжительный период. Первые исследования хромосом начались более 100 лет назад с помощью обычного светового микроскопа.
Сейчас сложно сказать, кто сделал первое описание и рисунок хромосом. В 1872г. швейцарский ботаник Карл Вильгельм Нэгили опубликовал работу, в которой изобразил некие тельца, возникающие на месте ядра во время деления клетки при образовании пыльцы у лилии (Lilium tigrinum) и традесканции (Tradescantia). Однако его рисунки не позволяют однозначно утверждать, что Карл Нэгили видел именно хромосомы.
В том же 1872 году ботаник Эдмунд Руссов привел свои изображения деления клеток при образовании спор у папоротника из рода ужовник (Ophioglossum) и пыльцы лилии (Lilium bulbiferum). На его иллюстрациях легко узнать отдельные хромосомы и стадии деления.
Некоторые исследователи полагают, что первыми увидел хромосомы немецкий ботаник Вильгельм Фридрих Хофмайстер задолго до К.Нэгили и Э.Руссова, еще в 1848-1849 гг. При этом ни К.Нэгили, ни Э.Руссов, ни тем более В. Хофмейстер не осознавали значения того, что видели.
В разных статьях и книгах приоритет открытия хромосом отдают разным людям, но чаще всего годом открытия хромосом называют 1882 г., а их первооткрывателем — немецкого анатома Вальтера Флеминга. Однако справедливее было бы сказать, что он не открыл хромосомы, а в своей фундаментальной книге «Клеточное вещество, ядро и деление клетки» ("Zellsubstanz, Kern und Zelltheilung") собрал и упорядочил сведения о них, дополнив результатами собственных исследований (рис. 1).
Рисунок из книги В.Флемминга, изображающий разные стадии деления клеток эпителия саламандры (W.Flemming. Zellsubstanz, Kern und Zelltheilung. 1882г.)
В книге он описал непрямое деление ядра и привел много детальных рисунков. Ввел термины хроматин и митоз.
Термин «хромосома» был предложен немецким гистологом Х.Вальдейером в 1888г., «хромосома» в буквальном переводе означает «окрашенное тело», поскольку оснóвные красители хорошо связываются хромосомами.
Цитогенетика как наука сформировалась в начале 20 века. После переоткрытия в 1900г. законов Менделя потребовалось всего один-два года для того, чтобы стало ясно, что хромосомы ведут себя именно так, как это ожидалось от «частиц наследственности». В 1902г. Теодор Генрих Бовери (Германия) и в 1902-1903 гг. Уолтер Саттон и Эрнест Генри Вильсон (США) независимо друг от друга первыми выдвинули гипотезу о генетической роли хромосом. Они пришли к заключению, что именно хромосомы являются материальными носителями факторов наследственности, открытых Г. Менделем и позднее названных генами.
Т.Бовери обнаружил, что зародыш морского ежа Paracentrotus lividus может нормально развиваться только при наличии хотя бы одного, но полного набора хромосом. Также он установил, что разные хромосомы не идентичны по своему составу. У.Сеттон изучал гаметогенез у саранчового Brachystola magna и понял, что поведение хромосом в мейозе и при оплодотворении полностью объясняет закономерности расхождения менделевских факторов и образования их новых комбинаций.
В 1903 г. Сеттон в 1903 впервые использовал термин «цитогенетика».
В 1907 году американским исследователем К. Мак-Клонгом были открытыполовые хромосомы. Это событие было первым успехом применения микроскопа для решения задач генетики. Идентификация половых хромосом остается начальным этапом цитогенетического исследования всякого биологического объекта.
На начальных этапах развития изучались геномы, растений, низших животных, прокариот и вирусов. Цитогенетика человека и млекопитающих, занимающая ведущее место в современной цитогенетике, развилась позже, главным образом в связи с методическими трудностями.
Рассмотрим современные представления о макроструктуре хромосом. Прежде всего, необходимо отметить, что организация структур, отвечающих за наследственность у прокариотических и эукариотических организмов имеет отличия. В эукариотических клетках информация, необходимая для поддержания вида и нормального развития индивидуума, содержится в хромосомах, заключённых в клеточных ядрах, а у бактерий и сине-зеленых водорослей хромосомный материал, находится непосредственно в цитоплазме без ядерной оболочки.
Важная особенность хромосом заключается в их способности изменять свою структуру в зависимости от фазы клеточного цикла. Хромосомы как индивидуальные структуры становятся доступными для исследования после значительного укорочения и утолщения, которые они испытывают в период подготовки клетки к делению. Для соматических клеток таким делением является митоз, для генеративных — сначала митоз, а затем мейоз.
Хромосомы в этом состоянии представляют собой компактные палочковидные структуры разной длины с довольно постоянной толщиной, у большей части хромосом имеется перетяжка (первичная хромосомная перетяжка Х.п.), которая делит хромосому на два плеча. В области перетяжки расположена важная для удвоения хромосом структура, называемая центромерой (рис. 2).
Рисунок 2.
Центромера – это особое образование, к которому прикрепляются нити веретена деления. Участки хромосомы, разделенные центромерой, называются плечами. Длинное плечо хромосомы обозначают буквой q, короткое — буквой p.
У некоторых хромосом имеются вторичные перетяжки - морфологический признак, позволяющий идентифицировать отдельные хромосомы в наборе. От первичной перетяжки отличаются отсутствием заметного угла между сегментами хромосомы. Вторичные перетяжки бывают короткими и длинными и локализуются в разных точках по длине хромосомы. Эти зоны называют зоны ядрышка (организаторы ядрышка). У человека вторичные перетяжки имеют 9, 13, 14, 15, 21 и 22 хромосомы.
Некоторые хромосомы имеют сателлит (спутник) — это округлое или удлинённое тельце, отделённое от основной части хромосомы тонкой хроматиновой нитью, по диаметру равный или несколько меньший хромосоме. Хромосомы, обладающие спутником принято обозначать SAT-хромосомами. Форма, величина спутника и связывающей его нити постоянны для каждой хромосомы.
Концевые зоны хромосом называются теломерами. У позвоночных теломеры состоят из богатых G повторов ДНК-последовательностей (TTAGGG) и специфических белков, создающих эти специализированные структуры. Взаимодействуя со многими другими факторами в клетке, теломеры способствуют динамичной регуляции поддержания стабильности хромосом.
В зависимости от морфологии выделяют 4-х типа хромосом:
- метацентрические (V-образные хромосомы, обладающие плечами равной длины);
- субметацентрические (с плечами неравной длины, напоминающие по форме букву L);
- акроцентрические- резко неравноплечие (палочковидные хромосомы с очень коротким, почти незаметным вторым плечом);