Значение биохимического полиморфизма

Биохимические полиморфные системы белков используются для следующих целей:

1) изучения причин и динамики генотипической изменчивос­ти, составляющей основу эволюционной генетики;

2) уточнения происхождения отдельных животных;

3) описания межпородной и внутрипородной дифференциа­ции, изучения филогенеза и аллелофонда пород, линий и се­мейств, а также генетических процессов, происходящих в попу­ляциях животных, и изменения их генетической структуры в процессе селекции;

4) определения моно- и дизиготных двоен;

5) построения генетических карт хромосом;

6) подбора гетерозисной сочетаемости;

7) выявления связи с резистентностью к заболеваниям, про­дуктивностью;

8) использования биохимических систем в качестве генетичес­ких маркеров в селекции животных.

Изучение 9 полиморфных систем белков у 10 главных групп скота позволило подтвердить вывод о том, что зебувидный скот Индии значительно отличается от европейских пород и принад­лежит к другому виду (Bos indicus). Санга (тип африканского горбатого скота) занимает промежуточное положение между ин­дийским зебу и европейскими породами, но в то же время имеет свои уникальные признаки. Часть из них — следствие обмена генов в результате миграции зебувидного скота Индии в Африку. Использование генных частот позволяет вычислить генетические дистанции между породами и определить их эволюционную вза­имосвязь. На рисунке 48 в качестве примера показаны эволюци­онные взаимосвязи между 14 породами скота.

По данным С. А. Петрушки (1970), частота аллеля P-LgA была в 2 раза выше у животных голландской и симментальской пород (0,514 и 0,436) в сравнении с бурой латвийской (0,210). Многие европейские породы имеют очень низкую частоту типов транс-феррина Т^ и TF.

Использование полиморфных систем белков вместе с группа­ми крови повышает точность определения происхождения жи­вотных. Так, по группам крови отцовство можно установить в 81 % случаев, а дополнительные анализы только типов транс-феррина повышают точность до 90 %.

По данным В. В. Пилько, Ю. О. Шапиро и А. С. Гурьяновой (1970), в четырех хозяйствах Белоруссии у коров бурой латвий­ской и костромской пород с TfDD удой был выше на 256— 270 кг, чем у животных с другими генотипами. Л. С. Жеброский и др. (1979) на большом материале показали, что ген к-СпА во всех стадах связан с повышенной молочностью. Таким же эф­фектом обладает аллель p-LgA, но в то же время он снижал содержание жира в молоке коров черно-пестрой породы.

Данные по красной датской породе свидетельствуют о том, что только 3 % генетической изменчивости в содержании жира и 5 % в молочности обусловлены различиями по группам крови. Видимо, есть большая вероятность установления более тесной корреляции генетических полиморфных систем с резистентнос-тью к некоторым заболеваниям вследствие менее сложной их генетической детерминации, чем признаков продуктивности Анализ полиморфизма яичного белка овоглобулинового локу-са G3 показал, что куры с типом АВ более устойчивы к пуллоро-зу-тифу. Восприимчивость к этому заболеванию кур породы леггорн была связана с аллелем G^S, а породы корниш — с алле-лем GB3-

В Австралии, а потом в Кении у породы овец ромни-марш с типом гемоглобина НЬА найдена более высокая резистентность к гемонхозу (заболевание, вызываемое нематодами, паразитирую­щими в сычуге), чем у животных с гемоглобином типов НЬВ и НЬАВ. Однако имеются сведения и об отсутствии связи типов гемоглобина у местных флоридских овец с невосприимчивостью к гемонхозу.

Устойчивость овец к лептоспирозу связана с гетерозиготнос-тью по гемоглобиновому локусу (НЬАВ), тогда как особи с типом А или В более восприимчивы. Эта инфекционная болезнь проявляется у животных кратковременной лихорадкой, желту­хой, гемоглобинурией, абортами и другими признаками. У сви­ней найдена ассоциация лептоспироза с аллелем амилазы АтА. Уровень антител к лептоспирозу увеличивался у животных с этим аллелем, а с аллелем Am8 — уменьшался.

У свиней установлена связь типов фермента фосфогексоизо-мераза (PHI) с синдромом злокачественной гипертермии (MHS). Коэффициент корреляции между чувствительностью к MHS и генотипом РН1В/РН1В равен 0,19, а относительный риск возник­новения MHS у особей этого генотипа по отношению к имею­щим его животным был 18,8.

Изучение новых биохимических полиморфных систем позво­лит глубже понять динамику генотипической изменчивости в популяциях и механизмы поддержания этой изменчивости, изме­нение генетической структуры популяций при селекции, плани­рование и контроль с их помощью селекционного процесса. Можно рассчитывать на выявление более однозначных связей отдельных аллелей или их совокупности с резистентностью к болезням, признакам продуктивности и использовать полиморф- ные системы как генетические маркеры в селекции.

Генетический груз популяций

В ходе длительной эволюции животных наряду с полезными мутациями, подхватываемыми отбором, в популяциях или поро­дах накопился определенный спектр генных и хромосомных му­таций. Каждое поколение популяции наследует этот груз мута­ций, и в каждом из них возникают новые мутации, часть кото­рых передается последующим поколениям.

Очевидно, что 'большая часть вредных мутаций отметается естественным отбором или элиминируется в процессе селекции. Это прежде всего доминантные генные мутации, фенотипически проявляющиеся в гетерозиготном состоянии, и количественные изменения наборов хромосом. Рецессивно действующие генные мутации в гетерозиготном состоянии и структурные перестройки хромосом, заметно не влияющие на жизнеспособность их носи­телей, могут проходить сквозь сито селекции. Они формируют генетический груз популяции. Таким образом, под генетическим

грузом популяции понимают совокупность вредных генных и хромосомных мутаций. Различают мутационный и сегрегационный генетический груз. Первый формируется вследствие новых мута­ций, второй — в результате расщепления и перекомбинирования аллелей при скрещивании гетерозиготных носителей «старых» мутаций.

Частота летальных, полулетальных и субвитальных мутантных генов, передающихся из поколения в поколение в форме мута­ционного генетического груза, из-за трудности идентификации носителей не поддается точному учету. Мортон и Кроу предло­жили форму расчета уровня генетического груза в количестве летальных эквивалентов. Один летальный эквивалент соответст­вует одному летальному гену, обусловливающему смертность с 10%-ной вероятностью, двум летальным генам при 50%-ной ве­роятности смерти и т. д. Величина генетического груза по фор­муле Мортона

log eS=A + BF,

где S— часть потомства, оставшаяся в живых; Л — смертность, измеряемая ле­тальным эквивалентом в популяции при условии случайных спариваний (F= 0), плюс смертность, обусловленная внешними факторами; В— ожидаемое увеличе­ние смертности, когда популяция становится полностью гомозиготной (F- 1); F — коэффициент инбридинга.

Уровень генетического груза можно определять на основании фенотипического проявления мутаций (уродства, врожденные аномалии обмена и т. д.), анализа типа их наследования, частоты в популяции.

Н. П. Дубинин предлагает определять генетический груз по­пуляции путем сравнения частот мертворожденных в родствен­ных и неродственных подборах родительских пар. При этом следует иметь в виду, что при высокой частоте гетерозигот по рецессивным летальным и полулетальным мутантным генам рождение животных с аномалиями необязательно должно быть связано с инбридингом близких и умеренных степеней. Общий предок (источник мутации) может находиться и в отдаленных рядах родословной. К примеру, бык Трувор 2918 — гетерозигот­ный носитель мутантного рецессивного гена, находился в V, VI, VII рядах предков в совхозе «Красная Балтика», но при исполь­зовании его праправнука Автомата 1597 на родственных ему коровах наблюдались массовые случаи рождения бесшерстных телят (рис. 41).

Другой прапраправнук Трувора бык Док 4471 также оказался гетерозиготным носителем гена бесшерстности. В совхозе «Новое время» при умеренно родственных спариваниях и отда­ленном инбридинге в потомстве Дока 4471 зарегистрировано примерно 5 % телят с этой генетической аномалией.

Эти данные в определенной мере характеризуют уровни гене-тического груза по отдельным мутантным генам в конкретных популяциях крупного рогатого скота.

Хромосомные мутации являются составной частью генетичес­кого груза. Учет их ведется прямым цитологическим методом. По результатам многочисленных исследований основной компо­нентой груза аберраций хромосом у крупного рогатого скота являются робертсоновские транслокации, а у свиней — реци-прокные. Наиболее распространенной мутацией у крупного рога­того скота оказалась транслокация 1/29 хромосомы. Размах из­менчивости частоты этой аберрации, по нашим данным, в попу­ляциях палево-пестрого скота составлял от 5 до 26 %.

Таким образом, концепция генетического груза в свете совре­менных достижений цитогенетики должна быть расширена. Сей­час, когда известен широкий спектр аберраций хромосом и уста-

новлено строгое наследование отдельных из них (транслокации и инверсии), представляется целесообразным учитывать их наряду с вредными мутациями генов как составляющую часть генети­ческого груза.

Наши рекомендации