Перенос генетического материала из одной клетки в другие

Трансформация

Трансдукция

Конъюгация у бактерий.

Использование процесса конъюгации

КОНЪЮГАЦИЯ

Конъюгация — перенос генетического материала от одной бак­териальной клетки (донора) к другой (реципиенту) при их непо­средственном контакте. Процесс конъюгации у бактерий обнару­жили Дж. Ледерберг и Э. Татум в 1946 г. Они провели следую­щий эксперимент. Были отобраны два ауксотрофных мутантных штамма Е. coli К-12: не способный синтезировать метионин и биотин штамм Met" Bio~ и не способный синтезировать трео­нин и лейцин штамм Thr~ Leu~\ Оба штамма в течение ночи выращивали вместе на полноценной среде. Затем смешанную культуру центрифугировали, отмывали от полноценной среды и высевали на минимальную питательную среду. На минимальной питательной среде без метионина, биотина, треонина и лейцина появились прототрофные колонии Met+ Bio+ Thr+ Leu+ с часто­той около 1 на каждые 107 клеток. Дополнительные опыты пока­зали, что ни трансформации, ни трансдукции в данном случае не происходило. Из этого следовало, что образование рекомбинант-ных геномов происходило в результате контакта родительских клеток. Вскоре были получены микрофотографии конъюгирую-щих бактерий кишечной палочки, которые свидетельствов^али о том, что между бактериями при конъюгации образуется "цито-плазматический мостик.

В 1952 г. Хейс установил неравноценную роль родительских штаммов при конъюгации. Выяснилось, что один штамм являет­ся донором (мужским), другой — реципиентом (женским). Клетки-доноры обладают половым фактором F. Он является конъюгатив-ной плазмидой и представляет собой циркулярно замкнутую мо­лекулу ДНК. Половой фактор F автономно существует в цитоплазме. Бактериальные клетки с фактором F обозначают F4", а не имеющие его — F~. В составе генома конъюгативной плаз-миды имеется tra-оперон, гены которого контролируют образова­ние половых ворсинок (пилей) донорской клетки, необходимых для осуществления контакта с реципиентной клеткой, коныога-тивный перенос собственной плазмиды или хромосомной ДНК, а также репликацию автономной плазмиды.

Механизм переноса генетического материала при конъюгации из бактерии донора в бактерию реципиента показали В. Вольман и Ф. Жакоб. При конъюгации фактор F может перейти из муж­ской в женскую клетку и превратить ее в F4". Доноры F4" пере­носят довольно эффективно F-плазмиду во все клетки F~, a гены хромосомы — с низкой частотой (10~5).

Половой фактор F обладает способностью включаться в геном бактерии и тогда из цитоплазматической структуры превращается в фрагмент хромосомы. Клетки, в которых возникает этот процесс, образуют Hfr-штамм. Доноры Hfr переносят бактериальную хромо­сому с фиксированной точки — сайта интеграции плазмиды, ори­ентированным образом и с высокой частотой (10 2— 10 3). Интег­рированный F-фактор переносится последним. Генетическим методом идентифицировано около 25—30 сайтов интеграции фактора F в хромосому. При конъюгации клетки-доноры F4" или Hfr соединяются с клетками-реципиентами F~~ при помощи конъюгационного мостика — особой протоплазматической труб­ки, образуемой клеткой F"1". В клетке донора Hfr под влиянием фермента эндонуклеазы в точке внедрения фактора F происхо­дит разрыв цепи ДНК. Свободный конец одной из цепей ДНК постепенно начинает передвигаться через конъюгационный мос­тик в клетку реципиента (F~) и сразу же достраиваться до двух-цепочной структуры. На оставшейся в клетке-доноре цепи ДНК синтезируется вторая цепь.

Так как фактор F у разных штаммов Hfr включается в хромо­сому и разрывает ее в разных местах, переход хромосом в реци-пиентную клетку начинается с разных участков. Для переноса всей цепи ДНК в клетку реципиента требуется при 37 °С 100 мин, но конъюгационный мостик очень хрупкий, легко раз­рывается, и, как правило, вся цепь не успевает перейти. Поэтому с более высокой частотой передаются гены, расположенные около начальной 0-й точки хромосомы донора. Затем ДНК доно­ра в гомологичных участках вступает в контакт с ДНК реципи­ента, и в результате кроссинговера некоторые участки одной цепи ДНК реципиента заменяются фрагментами ДНК донора.

Искусственное прерывание конъюгации через определенное время после начала скрещивания и выявление рекомбинантов дали возможность определить последовательность перехода раз­ных генов донора в клетку F~. На основании определения вре­мени передвижения фрагментов разной длины из клеток Hfr в клетки F~ было установлено расстояние между генами в мину­тах, что позволило построить карты хромосом.

В основе построения карт хромосом лежат последователь­ность расположения генов в хромосоме и расстояние между ними в минутах. Вся окружность хромосомы Е. coli составляет 100 мин. К настоящему времени на карту Е. coli К-12 нанесено более 1000 генов, что составляет около 30 % ее генетической емкости (рис. 23). Иногда включенный в хромосому Hfr половой фактор освобождается и при этом (подобно профагу) может за­хватить с собой прилегающий к нему участок ДНК бактерии. При конъюгации половой фактор вместе с фрагментом ДНК иногда переходит в женскую клетку, превращая ее в мужскую и передавая ей свойства, контролируемые фрагментом хромосомы донора. Процесс переноса генетической информации при помо­щи полового фактора называется сексдущией.

ТРАНСДУКЦИЯ

Трансдукция — перенос генов из одной бактериальной клетки в другую при помощи бактериофага. Впервые это явление уста­новили в 1952 г. Н. Зиндер и Дж. Ледерберг. Они проводили исследования на патогенных для мышей бактериях Salmonella typhimurium. Были отобраны два штамма этих бактерий: штамм 22А ауксотрофный, не способный синтезировать триптофан (Т~), и штамм 2А, способный синтезировать триптофан (Т1"). Эти штаммы засевали в U-образную трубку, разделенную внизу бак­териальным фильтром (рис. 24). В одно колено трубки засевали штамм 22А (Т~), в другое — штамм 2А (Г*). После определенно­го периода инкубации бактерии штамма 22А при посеве на ми­нимальную питательную среду дали небольшое количество коло­ний (частота появления трансдуцированных клеток была равна 110~*). Это свидетельствовало о том, что некоторые клетки приобрели способность синтезировать триптофан. Каким же об­разом бактерии могли приобрести это свойство? Исследования показали, что штамм 22А был лизогенен по фагу Р-22. Этот фаг освобождался из лизоген-ной культуры, проходил через фильтр и лизировал штамм 2А. Присоединив часть генетичес­кого материала штамма 2А, фаг возвращался обратно и переда­вал этот генетический материал штамму 22А. Штамм 22А при­обретал специфические наслед­ственные свойства штамма 2А, в данном случае свойство син­тезировать триптофан. Анало­гичным образом могут быть трансдуцированы и другие при­знаки, в том числе способность к сбраживанию, устойчивость к антибиотикам и т. д.

Явление трансдукции уста­новлено также у кишечной па- лочки и актиномицетов. Как правило, трансдуцируется один ген, реже два и очень редко три сцепленных гена. При переносе генетического материала заменяется участок молекулы ДНК фага. Фаг при этом теряет свой собственный фрагмент и стано­вится дефектным. Включение генетического материала в хромо­сому бактерии реципиента осуществляется механизмом типа кроссинговера. Происходит обмен наследственным материалом между гомологичными участками хромосомы реципиента и мате­риала, привнесенного фагом.

Различают три вида трансдукции: общую, или неспецифичес­кую, специфическую и абортивную. При неспецифической транс­дукции в период сборки фаговых частиц в их головку вместе с фаговой ДНК может включиться любой из фрагментов ДНК пораженной бактерии. В результате в реципиентные клетки могут переноситься различные гены бактерии донора. Неспеци­фическую трансдукцию могут осуществлять фаги Р-1 и Р-22 у эшерихий, шигелл и сальмонелл. При специфической трансдукции профаг включается в определенное место хромосомы бактерии и трансдуцирует определенные гены, расположенные в хромосоме клетки донора рядом с профагом. Например, фаг X (лямбда) в состоянии профага всегда включается в одно и то же место в хромосоме кишечной палочки и трансдуцирует локус, обуслов­ливающий способность к сбраживанию галактозы. При отделе­нии профагов от ДНК хозяина прилегающие к профагу бактери­альные гены вместе с ним выщепляются из состава хромосомы, а часть генов профага остается в ее составе. Частота общей трансдукции составляет от 1 на 1 млн до 1 на 100 млн. Специ­фическая трансдукция происходит чаще.

Установлено, что фрагмент хромосомы донора, перенесенный в клетку реципиента, не всегда включается в хромосому реципи­ента, а может сохраняться в цитоплазме клетки. При делении бактерий он попадает только в одну из дочерних клеток. Такое состояние получило название абортивной трансдукции.

ТРАНСФОРМАЦИЯ

Трансформация — поглощение изолированной ДНК бактерии до­нора клетками бактерии реципиента. Явление трансформации кратко освещено при изложении доказательств роли ДНК в на­следственности. В процессе трансформации принимают участие две бактериальные клетки: донор и реципиент. Трансформирую­щий агент представляет собой часть молекулы ДНК донора, которая внедряется в геном реципиента, изменяя его фенотип. В процессе трансформации клетки донора и реципиента не сопри­касаются друг с другом. Механизм переноса генетического мате­риала заключается в том, что из клеток донора выделяются в окружающую среду молекулы или фрагменты молекул ДНК. Сначала эта ДНК адсорбируется на оболочке клетки реципиента. Затем через определенные рецепторные участки ее стенки при помощи специальных клеточных белков ДНК втягиваются внутрь клетки. Проникающая донорская ДНК должна быть двух-цепочной. В реципиентной клетке она становится одноцепоч-ной. В ДНК реципиента включается одна из цепей трансформи­рующего фрагмента. Эта цепь вступает в синапсис с гомологич­ным участком хромосомы реципиента и встраивается в нее посредством кроссинговера. При этом участок ДНК реципиента замещается фрагментом донора. Молекула ДНК со вставкой трансформирующего участка оказывается гибридной. При следу­ющем удвоении возникают одна нормальная дочерняя молекула ДНК, другая — трансформированная. Установлено, что способ­ность бактерий-реципиентов к трансформации определяется их физиологическим состоянием. Такое физиологическое состояние было названо компетентностью. Состояние компетентности краткосрочно и приурочено к определенному времени клеточно­го цикла. Было обнаружено, что трансформирующей способнос­тью обладают только крупные молекулы ДНК с молекулярной массой не менее 5-Ю5 Д. У бактерий трансформация имеет место чаще в пределах одного вида, но наблюдается и между разными близкими видами. Это указывает на то, что у них сохранилась гомологичность некоторых участков ДНК.

Изучение процессов рекомбинации у бактерий имеет важное значение для ветеринарного врача, так как ведет к пониманию причин высокой изменчивости бактерий, их способности к при­обретению свойств патогенное™, устойчивости к лекарственным веществам.

Мутационная измечивость.

Виды мутации

Геномные мутации

Хромосомные мутации.

Генные мутации

Геномные мутации – изменения числа хромосом. Они могут быть вызваны нерасхождением хромосом при мейозе, что приводит к появлению у гает нового набора хромосом. Геномные мутанты могут быть представлены гаплоидами(в два раза меньше хромосом), анеуплоидами (с лишней или недостабщей хромосомой), полиплоидами (с кратным увелечением числа хромосом)

МУТАЦИОННАЯ ИЗМЕНЧИВОСТЬ.

В предыдущих главах отмечено одно из основных свойств кариотипа, ДНК и ее участков (генов) — сохранять постоянство внешнего и внутреннего строения. Морфофункциональная ус­тойчивость генетического материала обеспечивает передачу всей совокупности наследственных признаков каждой особи последу­ющим поколениям и является основой для сохранения видовых признаков на протяжении многих сотен лет. Однако такая ста­бильность относительна. В силу действия внутренних и внешних факторов в генетическом материале возникают изменения — му­тации, определяющие мутационную изменчивость.

Мутациями называют стойкие изменения в структуре ДНК и кариотипе. Этот термин впервые предложил ботаник Гуго де Фриз для обозначения внезапно возникающих наследуемых изменений у растений. Большой вклад в развитие теории мутаций внесли отече­ственные ученые С. И. Коржинский, Н. В. Тимофеев-Ресовский, А. С. Серебровский, Н. П. Дубинин, М. Е. Лобашов и др.

Мутации у животных происходят постоянно с определенной час­тотой и скоростью. Процесс образования их получил название му­тагенеза. Мутации, возникающие в естественных условиях, называ­ют спонтанными, искусственно вызванные — индуцированными. Те и другие могут возникать как в генеративных, так и в соматических клетках. Мутации, возникающие в половых клетках, передаются в последующие поколения. Соматические мутации не наследуются. Они влияют только на признаки самого мутантного животного.

КЛАССИФИКАЦИЯ МУТАЦИЙ

Основные типы мутаций — изменения в числе или структуре хромосом — хромосомные мутации, в структуре ДНК —генные (точковые) мутации.

Хромосомные и генные мутации, как правило, вызывают у животных нарушения жизнеспособности, плодовитости, сниже­ние устойчивости к болезням, продуктивности и другие вредные последствия. Это связано с тем, что они приводят к нарушению процессов деления клеток, нормального распределения хромосом между ними, изменяют ход синтеза белков, ферментов и т. д.

ХРОМОСОМНЫЕ МУТАЦИИ

Изменения кариотипа могут быть количественными, струк­турными и одновременно теми и другими. Рассмотрим отдель­ные формы изменения хромосом (см. схему).

Числовые мутации кариотипа.Эта группа мутаций связана с изменением числа хромосом в кариотипе. Количественные изме­нения в хромосомном составе клеток называют геномными мута­циями. Они подразделяются на гетерогаюидию, анеуплоидию, полиплоидию.

Гетероплоидия обозначает общее изменение числа хромосом по отношению к диплоидному полному набору.

Об анеуплоидии говорят в тех случаях, когда число хромосом в клетке увеличено на одну (трисомия) или более (полисемия) или уменьшено на одну (моносомия). Употребляют также термины «гиперплоидия» и «гипоплоидия». Первый из них означает уве­личенное число хромосом в клетке, а второй — уменьшенное.

Полиплоидией называют увеличение числа полных хромосом­ных наборов в четное или нечетное число раз. Полиплоидные клетки могут быть тригогоидньщи, тетраплоидными, пентаплоид-ными, гексаплоидными и т. д.

Структурные мутации хромосом.Эта группа мутаций связана с изменением формы, размеров хромосом, порядка расположения генов (изменение групп сцепления), утратой или добавкой от­дельных фрагментов и т. д. Изменения структуры одной или нескольких хромосом называют хромосомными мутация­ми. Установлено несколько типов структурных мутаций хромо­сом.

Транслокации — перемещения отдельных фрагментов хромосом из одного участка в другой, обмены фрагментами между разными хромосомами, слияния хромосом. При взаимных обменах фраг­ментами между гомологичными или негомологичными хромосо­мами возникают транслокации, называемые реципрокными. Если целое плечо одной хромосомы присоединяется к концам другой хромосомы, такой тип транслокаций называют тандемным. Слия­ние двух акроцентрических хромосом в области центромер фор­мирует транслокацию робертсоновского типа и образование мета-и субметацентрических хромосом. При этом обнаруживается эли­минация блоков прицентромерного гетерохроматина.

Инверсии — внутрихромосомные аберрации, при которых фрагменты хромосом разворачиваются на 180°. Различают пери-и парацентрические инверсии. Если перевернутый фрагмент со­держит центромеру, инверсия называется перицентрической.

Делеции — потеря срединного фрагмента хромосомы, в резуль­тате ^чего она укорачивается.

Нехватки — потеря концевого фрагмента хромосомы.

Дупликация — удвоение фрагмента одной хромосомы (интра-хромосомные дупликации) или разных хромосом- (интерхромо­сомные дупликации).

Кольцевые хромосомы формируются при наличии двух конце­вых разрывов (нехваток).

Изохромосомы возникают, если в противоположность нормально-. му делению хроматид в длину происходит горизонтальное (попере­чное) деление хромосомы в центромере с последующим слиянием гомолргичных плеч в новую хромосому — изохромосому. Ее про­ксимальные и дистальные участки идентичны по строению и составу генов. В зависимости от того, сколько хроматид изменено (одна или две), структурные аномалии подразделяются на хромосомные и хро-матидные. На рисунке 34 приведены схемы образования различных типов структурных изменений хромосом или аберраций.

ГЕННЫЕ МУТАЦИИ

По характеру действия генные мутации могут быть доминант­ными или рецессивными. Чаще мутантный ген обладает рецессив­ным эффектом. Нормальный аллель подавляет при этом дейст­вие измененного гена. По характеру влияния мутантных генов на контроль биосинтеза белков и ферментов выделяют пять типов мутаций: гипоморфные, гиперморфные, антиморфные, неоморф-ные и аморфные.

Если ген мутирует в рецессивное состояние, то для мутантно-го аллеля чаще всего характерно уменьшение количества того же самого биохимического продукта, синтез которого определяется исходным доминантным аллелем данного гена. Такие мутации называют гжоморфными. При гиперморфных генных мутациях в отличие от гипоморфных количество биохимического продукта, синтезируемого под контролем данного гена, не уменьшается, а увеличивается. К антиморфным генным мутациям относятся му­тации, при которых мутантный аллель вызывает образование продукта, тормозящего синтез или действие продукта исходного аллеля этого гена. Неоморфные генные мутации характеризуются тем, что мутантный аллель определяет синтез в организме биохи­мического продукта, отличающегося от продукта, специфичного для исходного немутантного аллеля и не взаимодействующего с этим продуктом. Иногда в организме в результате данной мута­ции перестает вырабатываться продукт, характерный для данного гена, т. е. ген полностью инактивируется. Такая мутация называ­ется аморфной.

Генные мутации могут представлять дефекты репликации, спирализации, репарации ДНК, посттрансляционные нарушения синтеза структурных белков и т. д.

Наши рекомендации