Биохимический код наследственности

РАЗНООБРАЗИЕ БЕЛКОВ

Белки выполняют в организме самые различные функции. В каче­стве ферментов они служат катализаторами химических реакций; в роли гормонов они, наряду с нервной системой, управляют работой различных органов, передавая химические сигналы. Белки использу­ются в организме и как строительный материал (например, в мышеч­ной ткани), и как транспортные средства (гемоглобин крови перено­сит кислород).

Размах синтеза белка, происходящего в клетке, огромен. Геном человека (набор последовательностей ДНК, определяющих генети­ческую индивидуальность человека) содержит порядка 6 биллионов нуклеотидов, из которых сформировано примерно 100 000 генов, чьи размеры варьируют в пределах от 1000 до 2 миллионов нуклеотидных пар. Если бы мы захотели описать эти 6 биллионов азотистых основа­ний и предположили, что на одной странице можно уместить около

Конец страницы №99

Начало страницы №100

3000 нуклеотидов, то нам понадобилось бы примерно 2 000 000 стра­ниц — «многотомное собрание» нуклеотидов (и это для генома только одного человека)!

Описание всех генов человека и расшифровка соответствующих последовательностей ДНК — основная задача международного иссле­довательского проекта «Геном Человека», который является самым крупным генетическим проектом в мире. Благодаря усилиям многих генетических лабораторий мира ученые будут иметь в своем распоря­жении полное описание генома человека.

ТИПЫ И СТРУКТУРА ГЕНОВ

До конца 80-х — начала 90-х годов геном называли сегмент ДНК, кодирующий полипептидную цепочку или определяющий функцио­нальную молекулу РНК. Однако современные молекулярные исследо­вания коренным образом изменили наше представление о структуре гена. Сегодня понятием «ген» обозначается сегмент геномной ДНК или РНК, выполняющий определенную функцию (причем выполне­ние этой функции вовсе не означает, что ген должен быть транскри­бирован и транслирован).

В настоящее время разделяют три типа генов: гены, кодирующие белки, которые транскрибируются в РНК и затем транслируются в белки; гены, кодирующие РНК; и регуляторные гены, которые со­держат нетранскрибируемые последовательности. Гены, кодирующие белки и РНК, называются структурными генами; их активность, «вклю­чение» и «выключение» определяются генами-регуляторами.

По мере проникновения в молекулярную структуру генетического материала все труднее становится находить в молекулах ДНК границы того, что обозначается понятием «ген». Это связано с тем, что про­цессы транскрипции (на ДНК) и трансляции (на мРНК) прямо не совпадают ни по локализации, ни по составу нуклеотидов. Наконец, постоянно увеличивается число открываемых генетических единиц. Так, наряду со структурными и регуляторными генами обнаружены, на­пример, участки повторяющихся нуклеотидных последовательностей, функции которых мы только начинаем понимать, и мигрирующие нуклеотидные последовательности (мобильные гены).

Структура гена сложна, и в данном учебнике она подробно рас­сматриваться не будет. Отметим только наиболее важные моменты. В основном гены высших организмов имеют прерывистую структуру. Обычно они состоят из блоков (экзонов) — транслируемых участков, которые копируются в мРНК, переносимую в цитоплазму, и других блоков (интронов) — нетранслируемых участков, которых в мРНК нет. На начальном этапе транскрипции ген копируется полностью в пре-мРНК вместе с нитронами, которые затем «вырезаются», обра­зуя зрелую мРНК. Так, некодирующая ДНК присутствует даже внут­ри самих генов.

Конец страницы №100

Начало страницы №101

РЕГУЛЯЦИЯ ЭКСПРЕССИИ ГЕНОВ

В каждый конкретный момент клетка не использует всю содержа­щуюся в ее хромосомах генетическую информацию. Например, клет­ки печени вырабатывают специфические ферменты, которые не син­тезируются, скажем, клетками почек, хотя те и другие содержат в своих ядрах одну и ту же ДНК. Кроме того, гены включаются и вык­лючаются на разных стадиях онтогенеза: например, организм челове­ка производит разные типы белка гемоглобина на разных этапах со­зревания организма (ранний эмбриогенез, развитие плода, детство, взрослый возраст). Синтез этих белков контролируется разными гена­ми, которые включаются и выключаются на разных этапах онтогенеза.

Регуляция генной экспрессии осуществляется на нескольких уров­нях при помощи целого набора клеточных механизмов. Общая задача процесса регуляции — избежать напрасных затрат энергии и создать условия для того, чтобы клетка производила наиболее эффективным образом все, в чем она нуждается. Процесс регуляции разворачивает­ся в соответствии с заданной генетической программой или в ответ на изменения как во внутренней, так и во внешней среде организма. Считается, что в геноме человека количество регуляторных генов при­мерно соответствует количеству структурных генов.

ИЗМЕНЧИВОСТЬ НА УРОВНЕ ДНК

До сих пор мы преимущественно говорили об изменчивости гено­типа в его широком определении. В последних разделах этой главы речь пойдет об изменчивости на уровне ДНК.

МУТАЦИИ ДНК

В главах I и III были даны определение мутаций и их классифика­ции. Здесь мы рассмотрим только один из видов мутаций — так назы­ваемые точковые мутации, т.е. мутации, вовлекающие отдельно взя­тые нуклеотиды. Точковые мутации представляют собой вставки или выпадения, а также изменения (разные типы замен одного азотистого основания на другое) пары нуклеотидов ДНК (или нуклеотида РНК). В результате мутирования возникают альтернативные формы генов (аллели) —ген становится полиморфным. Одни из этих мутаций явля­ются вредоносными, т.е. вызывающими развитие наследуемых заболе­ваний (главы II, III), а другие — нейтральными, не вызывающими никаких существенных изменений в синтезируемых белках.

Точковые мутации можно разделить на два больших класса. К пер­вому классу относятся те, которые связаны с заменой основания. Мутации второго класса обусловлены так называемым сдвигом рамки считывания.

Конец страницы №101

Начало страницы №102

Замена одного основания в цепи ДНК может привести к тому, что в синтезируемый белок будет встроена «неправильная» аминокис­лота (пример такой трансформации: Мама мыла раму ==> Мама рыла раму). В результате функция белка может быть нарушена. Например, если первый кодон мРНК (рис. 4.4) скопирован неправильно и вмес­то A UG в последовательности мРНК записана последовательность AGG, то вместо метионина будет синтезирован аргинин. Подобная замена единственной аминокислоты в цепочке сотен аминокислот, состав­ляющих белок, может проявиться по-разному. Спектр этих проявле­ний — от нулевых до летальных — зависит от структуры и функции синтезируемого белка.

Наши рекомендации