Лекция 1.Генетика – наука о наследственности и изменчивости.
ТЕМА 1. ВВЕДЕНИЕ В ГЕНЕТИКУ
Разделы генетики.
Генетика – фундамент современной биологии
Структура современной генетики
Вся генетика (как и любая наука) подразделяется на фундаментальную и прикладную.
Фундаментальная генетика изучает общие закономерности наследования признаков у лабораторных, или модельных видов: вирусов (например, Т-чётных фагов), прокариот (например, кишечной палочки), плесневых и дрожжевых грибов, дрозофилы, мышей и некоторых других.
К фундаментальной генетике относятся следующие разделы:
– классическая (формальная) генетика,
– цитогенетика,
– молекулярная генетика (в т.ч., генетика ферментов и иммуногенетика),
– генетика мутагенеза (в т. ч., радиационная и химическая генетика),
– эволюционная генетика,
– геномика и эпигеномика,
– генетика индивидуального развития и эпигенетика,
– генетика поведения,
– генетика популяций,
– экологическая генетика (в т.ч., генетическая токсикология),
– математическая генетика.
Прикладная генетика разрабатывает рекомендации для применения генетических знаний в селекции, генной инженерии и других разделах биотехнологии, в деле охраны природы. Идеи и методы генетики находят применение во всех областях человеческой деятельности, связанной с живыми организмами. Они имеют важное значение для решения проблем медицины, сельского хозяйства, микробиологической промышленности.
Генетическая (генная) инженерия – это раздел молекулярной генетики, связанный с целенаправленным созданием in vitro новых комбинаций генетического материала, способного размножаться в клетке-хозяине и синтезировать конечные продукты обмена.
Генная инженерия возникла в 1972, когда в лаборатории П. Берга (Станфордский ун-т, США) была получена первая рекомбинантная (гибридная) ДНК (рекДНК), в которой были соединены фрагменты ДНК фага лямбда и кишечной палочки с кольцевой ДНК обезьяньего вируса SV40.
В прикладной генетике в зависимости от объекта исследования выделяют следующие разделы частной генетики:
1. Генетика растений: дикорастущих и культурных: (пшеница, рожь, ячмень, кукуруза; яблони, груши, сливы, абрикосы – всего около 150 видов).
2. Генетика животных: диких и домашних животных (коров, лошадей, свиней, овец, кур – всего около 20 видов)
3. Генетика микроорганизмов (вирусов, прокариот, низших эукариот – десятки видов).
В особый раздел частной генетики выделяется генетика человека (существует специальный Институт медицинской генетики АМН России)
Генетика человека изучает особенности наследования признаков у человека, наследственные заболевания (медицинская генетика), генетическую структуру популяций человека. Генетика человека является теоретической основой современной медицины и современного здравоохранения (СПИД, Чернобыль). Известно несколько тысяч собственно генетических заболеваний, которые почти на 100% зависят от генотипа особи. К наиболее страшным из них относятся: кислотный фиброз поджелудочной железы, фенилкетонурия, галактоземия, различные формы кретинизма, гемоглобинопатии, а также синдромы Дауна, Тернера, Кляйнфельтера. Кроме того, существуют заболевания, которые зависят и от генотипа, и от среды: ишемическая болезнь, сахарный диабет, ревматоидные заболевания, язвенные болезни желудка и двенадцатиперстной кишки, многие онкологические заболевания, шизофрения и другие заболевания психики.
Задачи медицинской генетики заключаются в своевременном выявлении носителей этих заболеваний среди родителей, выявлении больных детей и выработке рекомендаций по их лечению. Большую роль в профилактике генетически обусловленных заболеваний играют генетико-медицинские консультации и пренатальная диагностика (то есть выявление заболеваний на ранних стадиях развития организма).
Существуют специальные разделы прикладной генетики человека (экологическая генетика, фармакогенетика, генетическая токсикология), изучающие генетические основы здравоохранения. При разработке лекарственных препаратов, при изучении реакции организма на воздействие неблагоприятных факторов необходимо учитывать как индивидуальные особенности людей, так и особенности человеческих популяций.
Методы генетики
Совокупность методов исследования наследственных свойств организма (его генотипа) называется генетический анализ. В зависимости от задачи и особенностей изучаемого объекта генетический анализ проводят на популяционном, организменном, клеточном и молекулярном уровнях.
Основу генетического анализа составляет гибридологический анализ, основанный на анализе наследования признаков при скрещиваниях. Гибридологический анализ, основы которого разработал основатель современной генетики Г. Мендель, основан на следующих принципах:
1. Использование в качестве исходных особей (родителей), форм, не дающих расщепления при скрещивании, т.е. константных форм.
2. Анализ наследования отдельных пар альтернативных признаков, то есть признаков, представленных двумя взаимоисключающими вариантами.
3. Количественный учет форм, выщепляющихся в ходе последовательных скрещиваний и использование математических методов при обработке результатов.
4. Индивидуальный анализ потомства от каждой родительской особи.
5. На основании результатов скрещивания составляется и анализируется схема скрещиваний.
Гибридологическому анализу обычно предшествует селекционный метод. С его помощью осуществляют подбор или создание исходного материала, подвергающегося дальнейшему анализу (например, Г. Мендель, который по существу является основоположником генетического анализа, начинал свою работу с получения константных – гомозиготных – форм гороха путём самоопыления);
Однако в некоторых случаях метод прямого гибридологического анализа оказывается неприменим. Например, при изучении наследования признаков у человека необходимо учитывать ряд обстоятельств: невозможность планирования скрещиваний, низкая плодовитость, длительный период полового созревания. Поэтому кроме гибридологи-ческого анализа, в генетике используется множество других методов.
Цитогенетический метод. Заключается в цитологическом анализе генетических структур и явлений на основе гибридологического анализа с целью сопоставления генетических явлений со структурой и поведением хромосом и их участков (анализ хромосомных и геномных мутаций, построение цитологических карт хромосом, цитохимическое изучение активности генов и т. п.). Частные случаи цитогенетического метода – кариологический, кариотипический, геномный анализ.
Популяционный метод. На основе популяционного метода изучают генетическую структуру популяций различных организмов: количественно оценивают распределение особей разных генотипов в популяции, анализируют динамику генетической структуры популяций под действием различных факторов (при этом ис пользуют создание модельных популяций).
Молекулярно-генетический метод представляет собой биохимическое и физико-химическое изучение структуры и функции генетического материала и направлен на выяснение этапов пути «ген → признак» и механизмов взаимодействия различных молекул на этом пути.
Мутационный метод позволяет (на основе всестороннего анализа мутаций) установить особенности, закономерности и механизмы мутагенеза, помогает в изучении структуры и функции генов. Особое значение мутационный метод приобретает при работе с организмами, размножающимися бесполым путём, и в генетике человека, где возможности гибридологического анализа крайне затруднены.
Генеалогический метод (метод анализа родословных). Позволяет проследить наследование признаков в семьях. Используется для определения наследственного или ненаследственного характера признака, доминантности или рецессивности, картирования хромосом, т. е. для установления принадлежности гена, кодирующего данный признак, к определенной группе сцепления, сцепленности с Х- или Y-хромосомами, для изучения мутационного процесса, особенно в случаях, когда необходимо отличить вновь возникшие мутации от тех, которые носят семейный характер, т. е. возникли в предыдущих поколениях. Как правило, генеалогический метод составляет основу для заключений при медико-генетическом консультировании (если речь не идет о хромосомных болезнях).
Близнецовый метод, заключающийся в анализе и сравнении изменчивости признаков в пределах различных групп близнецов, позволяет оценить относит, роль генотипа и внешних условий в наблюдаемой изменчивости. Особенно важен этот метод при работе с малоплодовитыми организмами, имеющими поздние сроки наступления половой зрелости (например, крупный рогатый скот), а также в генетике человека.
В генетическом анализе используют и многие другие методы:
· онтогенетический,
· иммуногенетический,
· сравнительно-морфологические и сравнительно-биохимические методы,
· методы биотехнологии,
· разнообразные математические методы и т. д.
ТЕМА 2. Цитогенетика.
МЕЙОЗ
Мейоз – это особый способ деления эукариотических клеток, при котором исходное число хромосом уменьшается в два раза (от древнегреч. «мейон» – меньше – и от «мейозис» – уменьшение).
Главной особенностью мейоза является конъюгация (спаривание) гомологичных хромосом с последующим расхождением их в разные клетки. Поэтому в первом делении мейоза вследствие образования бивалентов к полюсам клетки расходятся не однохроматидные, а двухроматидные хромосомы. В результате число хромосом уменьшается в два раза, и из диплоидной клетки образуются гаплоидные клетки.
Исходное число хромосом в клетке, которая вступает в мейоз, называется диплоидным (2n). Число хромосом в клетках, образовавшихся в ходе мейоза, называется гаплоидным (n).
Мейоз состоит из двух последовательных клеточных делений, которые соответственно называются мейоз I и мейоз II. В первом делении происходит уменьшение числа хромосом в два раза, поэтому его называют редукционным. Во втором делении число хромосом не изменяется; поэтому его называют эквационным (уравнивающим).
Предмейотическая интерфаза отличается от обычной интерфазы тем, что процесс репликации ДНК не доходит до конца: примерно 0,2...0,4 % ДНК остается неудвоенной. Однако в целом, можно считать, что в диплоидной клетке (2n) содержание ДНК составляет 4с. При наличии центриолей происходит их удвоение. Таким образом, в клетке имеется две диплосомы, каждая из которых содержит пару центриолей.
Первое деление мейоза (редукционное, или мейоз I)
Сущность редукционного деления заключается в уменьшении числа хромосом в два раза: из исходной диплоидной клетки образуется две гаплоидные клетки с двухроматидными хромосомами (в состав каждой хромосомы входит 2 хроматиды).
Профаза I (профаза первого деления) включает ряд стадий.
Лептотена (стадия тонких нитей). Хромосомы видны в световой микроскоп в виде клубка тонких нитей.
Зиготена (стадия сливающихся нитей). Происходит конъюгация гомологичных хромосом (от лат. conjugatio – соединение, спаривание, временное слияние). Гомологичные хромосомы (или гомологи) – это парные хромосомы, сходные между собой в морфологическом и генетическом отношении. В результате конъюгации образуются биваленты. Бивалент – это относительно устойчивый комплекс из двух гомологичных хромосом. Гомологи удерживаются друг около друга с помощью белковых синаптонемальных комплексов. Количество бивалентов равно гаплоидному числу хромосом. Иначе биваленты называются тетрады, так как в состав каждого бивалента входит 4 хроматиды.
Пахитена (стадия толстых нитей). Хромосомы спирализуются, хорошо видна их продольная неоднородность. Завершается репликация ДНК. Завершается кроссинговер – перекрест хромосом, в результате которого они обмениваются участками хроматид.
Диплотена (стадия двойных нитей). Гомологичные хромосомы в бивалентах отталкиваются друг от друга. Они соединены в отдельных точках, которые называются хиазмы (от древнегреч. буквы χ – «хи»).
Диакинез (стадия расхождения бивалентов). Хиазмы перемещаются к теломерным участкам хромосом. Биваленты располагаются на периферии ядра. В конце профазы I ядерная оболочка разрушается, и биваленты выходят в цитоплазму.
Метафаза I (метафаза первого деления). Формируется веретено деления. Биваленты перемещаются в экваториальную плоскость клетки. Образуется метафазная пластинка из бивалентов.
Анафаза I (анафаза первого деления). Гомологичные хромосомы, входящие в состав каждого бивалента, разъединяются, и каждая хромосома движется в сторону ближайшего полюса клетки. Разъединения хромосом на хроматиды не происходит.
Телофаза I (телофаза первого деления). Гомологичные двухроматидные хромосомы полностью расходятся к полюсам клетки. В норме каждая дочерняя клетка получает одну гомологичную хромосому из каждой пары гомологов. Формируются два гаплоидных ядра, которые содержат в два раза меньше хромосом, чем ядро исходной диплоидной клетки. Каждое гаплоидное ядро содержит только один хромосомный набор, то есть каждая хромосома представлена только одним гомологом. Содержание ДНК в дочерних клетках составляет 2с.
В большинстве случаев (но не всегда) телофаза I сопровождается цитокинезом.
После первого деления мейоза наступает интеркинез – короткий промежуток между двумя мейотическими делениями. Интеркинез отличается от интерфазы тем, что не происходит репликации ДНК, удвоения хромосом и удвоения центриолей: эти процессы произошли в предмейотической интерфазе и, частично, в профазе I.
Второе деление мейоза (эквационное, или мейоз II)
В ходе второго деления мейоза уменьшения числа хромосом не происходит. Сущность эквационного деления заключается в образовании четырех гаплоидных клеток с однохроматидными хромосомами (в состав каждой хромосомы входит одна хроматида).
Профаза II (профаза второго деления). Не отличается существенно от профазы митоза. Хромосомы видны в световой микроскоп в виде тонких нитей. В каждой из дочерних клеток формируется веретено деления.
Метафаза II (метафаза второго деления). Хромосомы располагаются в экваториальных плоскостях гаплоидных клеток независимо друг от друга. Эти экваториальные плоскости могут быть параллельны друг другу или взаимно перпендикулярны.
Анафаза II (анафаза второго деления). Хромосомы разделяются на хроматиды (как при митозе). Получившиеся однохроматидные хромосомы в составе анафазных групп перемещаются к полюсам клеток.
Телофаза II (телофаза второго деления). Однохроматидные хромосомы полностью переместились к полюсам клетки, формируются ядра. Содержание ДНК в каждой из клеток становится минимальным и составляет 1с.
Таким образом, в результате описанной схемы мейоза из одной диплоидной клетки образуется четыре гаплоидные клетки. Дальнейшая судьба этих клеток зависит от таксономической принадлежности организмов, от пола особи и ряда других факторов.
Типы мейоза. При зиготном и споровом мейозе образовавшиеся гаплоидные клетки дают начало спорам (зооспорам). Эти типы мейоза характерны для низших эукариот, грибов и растений. Зиготный и споровый мейоз тесно связан со спорогенезом. При гаметном мейозе из образовавшихся гаплоидных клеток образуются гаметы. Этот тип мейоза характерен для животных. Гаметный мейоз тесно связан с гаметогенезом и оплодотворением. Таким образом, мейоз – это цитологическая основа полового и бесполого (спорового) размножения.
Биологическое значение мейоза. Немецкий биолог Август Вайсман (1887) теоретически обосновал необходимость мейоза как механизма поддержания постоянного числа хромосом. Поскольку при оплодот ворении ядра половых клеток сливаются (и, тем самым, в одном ядре объединяются хромосомы этих ядер), и поскольку число хромосом в соматических клетках остается константным, то постоянному удвоению чис ла хромосом при последовательных оплодотворениях должен противостоять процесс, приводящий к сокращению их числа в гаметах ровно вдвое. Таким образом, биологическое значение мейоза заключается в поддержании постоянства числа хромосом при наличии полового процесса. Мейоз обеспечивает также комбинативную изменчивость – появление новых сочетаний наследственных задатков при дальнейшем оплодотворении.
Тема 2. Цитогенетика
Тема 2. Цитогенетика
Лекцмя 4. Кроссинговер
Кроссинговер (от англ. crossing-over – перекрёст) – это процесс обмена гомологичными участками гомологичных хромосом (хроматид).
Обычно кроссинговер происходит в мейозе I.
При кроссинговере происходит обмен генетическим материалом (аллелями) между хромосомами, и тогда происходит рекомбинация – появление новых сочетаний аллелей, например, AB + ab → Ab + aB.
Механизм кроссинговера «разрыв–воссоединение»
Согласно теории Янссенса–Дарлингтона, кроссинговер происходит в профазе мейоза. Гомологичные хромосомы с хроматидами АВ и ab образуют биваленты. В одной из хроматид в первой хромосоме происходит разрыв на участке А–В, тогда в прилежащей хроматиде второй хромосомы происходит разрыв на участке a–b. Клетка стремится исправить повреждение с помощью ферментов репарации–рекомбинации и присоединить фрагменты хроматид. Однако при этом возможно присоединение крест–накрест (кроссинговер), и образуются рекомбинантные хроматиды Ab и аВ. В анафазе первого деления мейоза происходит расхождение двухроматидных хромосом, а во втором делении – расхождение хроматид (однохроматидных хромосом). Хроматиды, которые не участвовали в кроссинговере, сохраняют исходные сочетания аллелей. Такие хроматиды (однохроматидные хромосомы) называются некроссоверными; с их участием разовьются некроссоверные гаметы, зиготы и особи. Рекомбинантные хроматиды, которые образовались в ходе кроссинговера, несут новые сочетания аллелей. Такие хроматиды (однохроматидные хромосомы) называются кроссоверными, с их участием разовьются кроссоверные гаметы, зиготы и особи. Таким образом, вследствие кроссинговера происходит рекомбинация – появление новых сочетаний наследственных задатков в хромосомах.
Согласно другим теориям, кроссинговер связан с репликацией ДНК: или в пахитене мейоза, или в интерфазе. В частности, возможна смена матрицы в вилке репликации.
Неравный кроссинговер
Это явление было детально изучено на примере гена Bar (В – полосковидные глаза), локализованного в Х-хромосоме D. melanogaster. Неравный кроссинговер связан с дупликацией какого-либо участка в одном из гомологов и с утратой его в другом гомологе. Обнаружено, что ген В может присутствовать в виде тандемных, т. е. следующих друг за другом, повторов, состоящих из двух и даже трех копий. Цитологический анализ подтвердил предположение о том, что неравный кроссинговер может вести к тандемным дупликациям. В области, соответствующей локализации гена В, на препаратах политенных хромосом отмечено увеличение числа дисков, пропорциональное дозе гена. Предполагается, что в эволюции неравный кроссинго вер стимулирует создание тандемных дупликаций различных последовательностей и использование их в качестве сырого генетического материала для формирования новых генов и новых регуляционных систем.
Регуляция кроссинговера
Кроссинговер – это сложный физиолого-биохимический процесс, который находится под генетическим контролем клетки и подвержен влиянию факторов внешней среды. Поэтому в реальном эксперименте о частоте кроссинговера можно говорить, имея в виду все те условия, в которых она была определена. Кроссинговер практически отсутствует между гетероморфными Х- и Y-хромосомами. Если бы он проис ходил, то хромосомный механизм определения пола посто янно разрушался бы. Блокирование кроссинговера между этими хромосомами связано не только с различием в их величине (оно наблюдается не всегда), но и обусловлено Y-специфичными нуклеотидными последовательностями. Обязательное условие синапса хромосом (или их участ ков) — гомология нуклеотидных последовательностей.
Для абсолютного большинства высших эукариот ха рактерна примерно одинаковая частота кроссинговера как у гомогаметного, так и гетерогаметного полов. Однако есть виды, у которых Кроссинговер отсутствует у особей гетерогаметного пола, в то время как у особей гомогаметного пола он протекает нормально. Такая ситуация наблю дается у гетерогаметных самцов дрозофилы и самок шелкопряда. Существенно, что частота митотического кроссинговера у этих видов у самцов и самок практически одинакова, что указывает на различные элементы контроля отдельных этапов генетической рекомбинации в половых и соматических клетках. В гетерохроматических районах, в частности прицентромерных, частота кроссинговера снижена, и поэтому истинное расстояние между генами в этих участках может быть изменено.
Обнаружены гены, выполняющие функции запирателей кроссинговера, но есть также гены, повышающие его частоту. Они иногда могут индуцировать заметное число кроссоверов у самцов дрозофилы. В качестве запирателей кроссинговера могут выступать также хромосомные перестройки, в частности инверсии. Они нарушают нор мальную конъюгацию хромосом в зиготене.
Обнаружено, что на частоту кроссинговера влияют возраст организма, а также экзогенные факторы: температура, радиация, концентрация солей, химические мутагены, лекарства, гормоны. При большинстве указанных воздействий частота кроссинговера повышается.
В целом кроссинговер представляет собой один из регулярных генетических процессов, контролируемых многими генами как непосредственно, так и через физиологическое состояние мейотических или митотических клеток. Частота различных типов рекомбинаций (мейотический, митотический кроссинговер и сестринские хроматидные обмены) может служить мерой действия мутагенов, канцерогенов, антибиотиков и др.
Изменение числа хромосом
Изменение числа хромосом в клетке означает изменение генома. (Поэтому такие изменения часто называют геномными мутациями.) Известны различные цитогенетические феномены, связанные с изменением числа хромосом.
Автополиплоидия
Автополиплоидия представляет собой многократное повторение одного и того же генома, или основного числа хромосом (х).
Этот тип полиплоидии характерен для низших эукариот и покрытосеменных растений. У многоклеточных животных автополиплоидия встречается крайне редко: у дождевых червей, некоторых насекомых, некоторых рыб и земноводных. Автополиплоиды у человека и других высших позвоночных погибают на ранних стадиях внутриутробного развития.
У большинства эукариотических организмов основное число хромосом (x) совпадает с гаплоидным набором хромосом (n); при этом гаплоидное число хромосом – это число хромосом в клетках, образовавшихся в хорде мейоза. Тогда в диплоидных (2n) содержится два генома x, и 2n=2x. Однако у многих низших эукариот, многих споровых и покрытосеменных растений в диплоидных клетках содержится не 2 генома, а некоторое иное число.
Число геномов в диплоидных клетках называется геномным числом (Ω). Последовательность геномных чисел называетсяполиплоидным рядом.
Например, у злаков при x = 7 известны следующие полиплоидные ряды (знаком + отмечено наличиеполиплоида определенного уровня):
Названия видов | Геномные числа (Ω), уровни плоидности числа хромосом в соматических клетках | ||||||||
2 x | 3 x | 4 x | 5 x | 6 x | 7 x | 8 x | 9 x | 10 x | |
Овсяница красная | + | + | + | + | |||||
Овсяница овечья | + | + | + | + | + | + | + | ||
Полевица побегообразующая | + | + | + | ||||||
Костер безостый | + | + | + |
Различают сбалансированные и несбалансированные автополиплоиды. Сбалансированными полиплоидами называются полиплоиды с чётным числом хромосомных наборов, а несбалансированными – полиплоиды с нечетным числом хромосомных наборов, например:
несбалансированные полиплоиды | сбалансированные полиплоиды | |||
гаплоиды | 1 x | диплоиды | 2 x | |
триплоиды | 3 x | тетраплоиды | 4 x | |
пентаплоиды | 5 x | гексаплоиды | 6 x | |
гектаплоиды | 7 x | октоплоиды | 8 x | |
эннеаплоиды | 9 x | декаплоиды | 10 x |
Автополиплоидия часто сопровождается увеличением размеров клеток, пыльцевых зерен и общих размеров организмов, повышенным содержанием сахаров и витаминов. Например, триплоидная осина (3х = 57) достигает гигантских размеров, долговечна, её древесина устойчива к гниению. Среди культурных растений широко распространены как триплоиды (ряд сортов земляники, яблони, арбузов, бананов, чая, сахарной свеклы), так и тетраплоиды (ряд сортов ржи, клевера, винограда). В природных условиях автополиплоидные растения обычно встречаются в экстремальных условиях (в высоких широтах, в высокогорьях); более того, здесь они могут вытеснять нормальные диплоидные формы.
Положительные эффекты полиплоидии связаны с увеличением числа копий одного и того же гена в клетках, и, соответственно, в увеличении дозы (концентрации) ферментов. Однако в ряде случаев полиплоидия приводит к угнетению физиологических процессов, особенно при очень высоких уровнях плоидности. Например, 84-хромосомная пшеница менее продуктивна, чем 42-хромосомная.
Однако автополиплоиды (особенно несбалансированные) характеризу-ются сниженной плодовитостью или полным бесплодием, что связано с нарушениями мейоза. Поэтому многие из них способны только к размножению вегетативным путем.
Аллополиплоидия
Аллополиплоидия представляет собой многократное повторение двух и более разных гаплоидных хромосомных наборов, которые обозначаются разными символами. Полиплоиды, полученные в результате отдаленной гибридизации, то есть от скрещивания организмов, принадлежащих к различным видам, и содержащие два и более набора разных хромосом, называются аллополиплоиды.
Аллополиплоиды широко распространены среди культурных растений. Однако, если в соматических клетках содержится по одному геному от разных видов (например, один геном А и один – В), то такой аллополиплоид – бесплоден. Бесплодие простых межвидовых гибридов связано с тем, что каждая хромосома представлена одним гомологом, и образование бивалентов в мейозе оказывается невозможным. Таким образом, при отдаленной гибридизации возникает мейотический фильтр, препятствующий передаче наследственных задатков в последующие поколения половым путем.
Поэтому у плодовитых полиплоидов каждый геном должен быть удвоен. Например, у разных видов пшеницы гаплоидное число хромосом (n) равно 7. Дикая пшеница (однозернянка) содержит в соматических клетках 14 хромосом лишь одного удвоенного генома А и имеет геномную формулу 2n = 14 (14А). Многие аллотетраплоидные твердые пшеницы содержат в соматических клетках 28 хромосом удвоенных геномов А и В; их геномная формула 2n = 28 (14А + 14В). Мягкие аллогексаплоидные пшеницы содержат в соматических клетках 42 хромосомы удвоенных геномов А, В, и D; их геномная формула 2n = 42 (14A + 14B + 14D).
Плодовитые аллополиплоиды можно получать искусственным путем. Например, редечно-капустный гибрид, синтезированный Георгием Дмитриевичем Карпеченко, был получен путем скрещиванием редьки и капусты. Геном редьки обозначается символом R (2n = 18 R, n = 9 R), а геном капусты – символом B (2n = 18 B, n = 9 B). Первоначально полученный гибрид имел геномную формулу 9 R + 9 B. Этот организм (амфигаплоид) был бесплодным, поскольку в мейозе образовывалось 18 одиночных хромосом (унивалентов) и ни одного бивалента. Однако у этого гибрида некоторые гаметы оказались нередуцированными. При слиянии таких гамет был получен плодовитый амфидиплоид: (9 R + 9 B) + (9 R + 9 B) → 18 R + 18 B. У этого организма каждая хромосома была представлена парой гомологов, что обеспечило нормальное образование бивалентов и нормальное расхождение хромосом в мейозе: 18 R + 18 B → (9 R + 9 B) и (9 R + 9 B).
В настоящее время ведется работа по созданию искусственных амфидиплоидов у растений (например, пшенично-ржаных гибридов (тритикале), пшенично-пырейных гибридов) и животных (например, гибридных шелкопрядов).
Тутовый шелкопряд – объект интенсивной селекционный работы. Нужно учесть, что у этого вида (как и у большинства бабочек) самки – гетерогаметный пол (XY), а самцы – гомогаметный (XX). Для быстрого размножения новых пород шелкопряда используют индуцированный партеногенез – из самок извлекают неоплодотворенные яйца еще до мейоза и нагревают их до 46 °С. Из таких диплоидных яиц развиваются только самки. Кроме того, у шелкопряда известен андрогенез – если яйцеклетку нагреть до 46 °С, убить ядро рентгеновскими лучами, а затем осеменить, то в яйцеклетку могут проникнуть два мужских ядра. Эти ядра сливаются между собой, и образуется диплоидная зигота (ХХ), из которой развивается самец.
Для тутового шелкопряда известна автополиплоидия. Кроме того, Борис Львович Астауров скрещивал тутового шелкопряда с дикой форой мандаринового шелкопряда, и в результате были получены плодовитые аллополиплоиды (точнее, аллотетраплоиды).
У тутового шелкопряда выход шелка из коконов мужского пола на 20-30 % выше, чем из коконов женского пола. В.А. Струнников с помощью индуцированного мутагенеза вывел породу, у которой самцы в Х–хромосомах несут разные летальные мутации (система сбалансированных леталей) – их генотип l1+/+l2. При скрещивании таких самцов с нормальными самками (++/Y) из яиц выходят только будущие самцы (их генотип l1+/++ или l2/++), а самки погибают на эмбриональной стадии развития, поскольку их генотип или l1+/Y, или +l2/Y. Для разведения самцов с летальными мутациями используются специальные самки (их генотип +l2/++·Y). Тогда при скрещивании таких самок и самцов с двумя летальными аллелями в их потомстве половина самцов погибает, а половина – несет два летальных аллеля.
Существуют породы тутового шелкопряда, у которых в Y–хромосоме имеется аллель темной окраски яиц. Тогда темные яйца (XY, из которых должны вывестись самки), отбраковываются, а оставляются только светлые (ХХ), которые в дальнейшем дают коконы самцов.
Анеуплоидия
Анеуплоидия (гетерополиплоидия) – это изменение числа хромосом в клетках, некратное основному хромосомному числу. Различают несколько типов анеуплоидии. При моносомии утрачивается одна из хромосом диплоидного набора (2n – 1). При полисомии к кариотипу добавляется одна или несколько хромосом. Частным случаем полисомии является трисомия (2n + 1), когда вместо двух гомологов их становится три. При нуллисомии отсутствуют оба гомолога какой-либо пары хромосом (2n – 2).
У человека анеуплоидия приводит к развитию тяжелых наследственных заболеваний. Часть из них связана с изменением числа половых хромосом (см. главу 17). Однако существуют и другие заболевания:
– Трисомия по 21-ой хромосоме (кариотип 47, +21); синдром Дауна; частота среди новорожденных – 1:700. Замедленное физическое и умственное развитие, широкое расстояние между ноздрями, широкая переносица, развитие складки века (эпикант), полуоткрытый рот. В половине случаев встречаются нарушения в строении сердца и кровеносных сосудов. Обычно понижен иммунитет. Средняя продолжительность жизни – 9-15 лет.
– Трисомия по 13-ой хромосоме (кариотип 47, +13); синдром Патау. Частота среди новорожденных – 1:5.000.
– Трисомия по 18-ой хромосоме (кариотип 47, +18); синдром Эдвардса. Частота среди новорожденных – 1:10.000.
Гаплоидия
Уменьшение числа хромосом в соматических клетках до основного числа называется гаплоидия. Существуют организмы – гаплобионты, для которых гаплоидия – это нормальное состояние (многие низшие эукариоты, гаметофиты высших растений, самцы перепончатокрылых насекомых). Гаплоидия как аномальное явление встречается среди спорофитов высших растений: у томата, табака, льна, дурмана, некоторых злаков. Гаплоидные растения отличаются пониженной жизнеспособностью; они практически бесплодны.
Псевдополиплоидия (ложная полиплоидия)
В некоторых случаях изменение числа хромосом может произойти без изменения объема генетического материала. Образно выражаясь, изменяется число томов, но не изменяется число фраз. Такое явление называется псевдополиплоидия. Различают две основные формы псевдополиплоидии:
1. Агматополиплоидия. Наблюдается в том случае, если крупные хромосомы распадаются на множество мелких. Встречается у некоторых растений и насекомых. У некоторых организмов (например, у круглых червей) происходит фрагментация хромосом в соматических клетках, но в половых клетках сохраняются исходные крупные хромосомы.
2. Слияние хромосом. Наблюдается в том случае, если мелкие хромосомы объединяются в крупные. Встречается у грызунов.
Нуклеиновые кислоты
Существует два типа нуклеиновых кислот: ДНК (дезоксирибонуклеиновая кислота) и РНК (рибонуклеиновая кислота). Нуклеиновые кислоты обеспечивают хранение, воспроизведение и реализацию генетической (наследственной) информации. Эта информация отражена (закодирована) в виде нуклеотидных последовательностей. В частности, последовательность нуклеотидов отражает первичную структуру белков (см. ниже). Соответствие между аминокислотами и кодирующими их нуклеотидными последовательностями называется генетическим кодом. Единицей генетического кода ДНК и РНК является триплет – последовательность из трех нуклеотидов.
Нуклеиновые кислоты – это химически активные вещества. Они образуют разнообразные соединения с белками – нуклеопротеиды, или нуклеопротеины.
Дезоксирибонуклеиновая кислота (ДНК) – это нуклеиновая кислота, мономерами которой являются дезоксирибонуклеотиды. ДНК является первичным носителем наследственной информации. Это означает, что вся информация о структуре, функционировании и развитии отдельных клеток и целостного организма записана в виде нуклеотидных последовательностей ДНК.
Нуклеиновые кислоты были открыты Мишером в 1868 г. Однако лишь в 1924 г. Фёльген доказал, что ДНК является обязательным компонентом хромосом. В 1944 г. Эвери, Мак-Леод и Мак-Карти установили, что ДНК играет решающую роль в хранении, передаче и реализации наследственной информации.
Существует несколько типов ДНК: А, В, Z, Т–формы. Из них в клетках обычно встречается В–форма – двойная правозакрученная спираль, которая состоит из двух нитей (или цепей), связанных между собой водородными связями. Каждая нить представлена чередующимися остатками дезоксирибозы и фосфорной кислоты, причем, к дезоксирибозе ковалентно присоединяется азотистое основание. При этом азотистые основания двух нитей ДНК направлены друг к другу и за счет образования водородных связей образуют комплементарные пары: А=Т (две водородных связи) и Г≡Ц (три водородных связи). Поэтому нуклеотидные последовательности этих цепей однозначно соответствуют друг другу. Длина витка двойной спирали равна 3,4 нм, расстояние между смежными парами азотистых оснований 0,34 нм, диаметр двойной спирали 1,8 нм.
Длина ДНК измеряется числом нуклеотидных пар (сокращ. – пн). Длина од