Регуляция генной активности у про - и эукариот
Регуляция активности генов у прокариот В процессе синтеза катаболических ферментов (расщепляющих суб-страты) у прокариот происходит индуцируемый синтез ферментов. Это дает клетке возможность приспосабливаться к условиям окружающей среды и экономить энергию, прекращая синтез соответствующего фермента, если потребность в нем исчезает. Для индукции синтеза катаболических ферментов обязательны следующие условия:
1. Фермент синтезируется только тогда, когда расщепление соответствующего субстрата необходимо для клетки.
2. Концентрация субстрата в среде должна превысить определенный уровень, прежде чем соответствующий фермент сможет образоваться.
Наиболее хорошо изучен механизм регуляции экспрессии генов у кишечной палочки на примере lac-оперона, контролирующего синтез трех катаболических ферментов, расщепляющих лактозу. Если в клетке много глюкозы и мало лактозы, промотор остается неактивным, а на операторе находится белок репрессор - блокируется транскрипция lac-оперона.
Когда количество глюкозы в среде, а следовательно и в клетке, уменьшается, а лактозы увеличивается, происходят следующие события: количество циклического аденозинмонофосфата увеличивается, он связывается с САР -белком - этот комплекс активирует промотор, с которым соединяется РНК-полимераза ; в это же время избыток лактозы соединяется с белком-репрессором и освобождает от него оператор - путь для РНК-полимеразы открыт, начинается транскрипция структурных генов lac -оперона. Лактоза выступает в качестве индуктора синтеза тех ферментов, которые её расщепляют. Лактозный оперон будет находиться в состоянии экспрессии до тех пор, пока в клетке уровень индуктора - лактозы не будет доведен до определенного уровня, характерного для данной клетки (принцип обратной связи). Тогда белок репрессор освободится от лактозы, займет свое место на операторе и транскрипция оперона прекратится.
Такая регуляция синтеза катаболических ферментов получила название негативной индукции, т.к. сам белок репрессор осуществляет негативный контроль за работой оперона (его присутствие на операторе выключает транскрипцию), а снимается блок транскрипции благодаря индуктору, который инактивирует белок репрессор. В настоящее время изучена работа многих оперонов, в том числе и оперонов анаболического ряда. Примером такого оперона у кишечной палочки может быть триптофановый оперон, контролирующий синтез пяти ферментов, необходимых для образования аминокислоты триптофана. Для триптофанового оперона синтезируется неактивный репрессор, который активируется лишь под действием корепрессора (триптофана). Здесь наблюдается особая форма ингибирования конечным продуктом: оперон становится активным в случае недостатка триптофана в среде, а высокое содержание в среде данной аминокислоты подавляет выработку фермента, необходимого для синтеза триптофана, т.к. избыток триптофана активирует белок репрессор, который соединяется с оператором и транскрипция прекращается- оперон репрессируется. Такая система регуляции называется негативной репрессией. Она позволяет не синтезировать вещество в избытке .Особенности регуляции экспрессии генов у эукариот Регуляция экспрессии генов у эукариот протекает намного сложнее. Различные типы клеток многоклеточного эукариотического организма синтезируют ряд одинаковых белков и в то же время они отличаются друг от друга набором белков, специфичных для клеток данного типа. Уровень продукции зависит от типа клеток, а также от стадии развития организма. Регуляция экспрессии генов осуществляется на уровне клетки и на уровне организма.Гены эукариотических клеток делятся на два основных вида: первый определяет универсальность клеточных функций, второй – детерминирует (определяет) специализированные клеточные функции. Функции генов первой группы проявляются во всех клетках. Для осуществления дифференцированных функций специализированные клетки должны экспрессировать определенный набор генов.Хромосомы, гены и опероны эукариотических клеток имеют ряд структурно-функциональных особенностей, что объясняет сложность экспрессии генов.
1. Опероны эукариотических клеток имеют несколько генов - регуляторов, которые могут располагаться в разных хромосомах.
2. Структурные гены, контролирующие синтез ферментов одного биохимического процесса, могут быть сосредоточены в нескольких оперонах, расположенных не только в одной молекуле ДНК, но и в нескольких.
3. Сложная последовательность молекулы ДНК. Имеются информативные и неинформативные участки, уникальные и многократно повторяющиеся информативные последовательности нуклеотидов.
4. Эукариотические гены состоят из экзонов и интронов, причем созревание и-РНК сопровождается вырезанием интронов из соответствующих первичных РНК-транскриптов (про-и-РНК), т.е. сплайсингом.
5. Процесс транскрипции генов зависит от состояния хроматина. Локальная компактизация ДНК полностью блокирует синтез РНК.
6. Транскрипция в эукариотических клетках не всегда сопряжена с трансляцией. Синтезированная и-РНК может длительное время сохраняться в виде информосом. Транскрипция и трансляция происходят в разных компартментах.
7. Некоторые гены эукариот имеют непостоянную локализацию (лабильные гены или транспозоны).
8. Методы молекулярной биологии выявили тормозящее действие белков-гистонов на синтез и-РНК.
9. В процессе развития и дифференцировки органов активность генов зависит от гормонов, циркулирующих в организме и вызывающих специфические реакции в определенных клетках. У млекопитающих важное значение имеет действие половых гормонов.
10. У эукариот на каждом этапе онтогенеза экспрессировано 5-10% генов, остальные должны быть заблокированы.