Генетическая структура популяций перекрестноразмножающихся организмов
К популяциям перекрестноразмножающихся организмов относятся популяции большинства видов животных и растений, размножающихся половым путем посредством свободного скрещивания особей друг с другом. Предполагается, что в такой популяции все особи обладают одинаковой вероятностью к случайному свободному скрещиванию, которое называется панмиксией. Особенности и закономерности наследственности и изменчивости в популяции перекрестноразмножающихся организмов обычно исследуются на примере панмиктической популяции, где случайное свободное скрещивание особей протекает при отсутствии отбора. Естественно, что существование столь идеальной популяции в природе маловероятно.
При перекрестном размножении в популяции идет постоянная, непрерывная гибридизация, результатом которой является максимальная гетерозиготность ее по многим генам. В основе гетерозиготности популяции лежат такие явления, как генетическая разнородность особей, вступающих в скрещивание, и постоянный процесс рекомбинации генов при перекрестном половом размножении. Следовательно, гибридные особи каждого последующего поколения имеют шансы все более отличаться друг от друга, а также от особей предыдущих поколений и генотипически и фенотипически. Примером служит большая фенотипическая разнородность у перекрестноопыляющейся ржи, чем у самоопыляющейся пшеницы.
Свободное скрещивание особей с непрерывным процессом возникновения новых комбинаций генов, на первый взгляд, может привести к беспорядочной изменчивости популяции. Однако именно свободное скрещивание предохраняет ее от хаоса в наследовании и приводит к состоянию относительного равновесия генотипов, аллелей и фенотипов. С. С. Четвериков писал: «В самом механизме свободного скрещивания заложен аппарат, стабилизирующий численности компонентов данного сообщества. Всякое изменение соотношения этих численностей возможно только извне и возможно только до тех пор, пока действует та внешняя сила, которая это равновесие нарушает».
В 1904 г. К. Пирсон установил закон стабилизирующего скрещивания, который в 1908г. подтвердили математик Г. Харди и врач В. Вайнберг, предложив независимо друг от друга формулу (формула Харди — Вайнберга), отражающую характер распределения аллелей, генотипов и фенотипов в популяции. Обозначив частоту гена А буквой р, а гена а — q, с помощью решетки Пеннета можно представить в обобщенном виде распределение аллелей в популяции (таблица 1).
Таблица 1 – Распределение частот генотипов в условиях свободного скрещивания при заданных соотношениях гамет
Самцы | Самки | |
p А | q а | |
p А q а | p2 АА pq Аа | pq Аа q2 аа |
В условиях свободного скрещивания соотношение аллелей и генотипов в описанной популяции будет выглядеть следующим образом:
р2АА : 2pqAa : а2аа.
Сущность закона стабилизирующего скрещивания, как пишет Четвериков, сводится к тому, что «в условиях свободного скрещивания при любом исходном соотношении численности гомозиготных и гетерозиготных родительских форм в результате первого же скрещивания внутри сообщества устанавливается состояние равновесия...» и, как бы не было нарушено извне это равновесие, «...в результате первого же за тем скрещивания внутри сообщества устанавливается новое равновесие и сохраняется до тех пор, пока какая-нибудь внешняя сила вновь не выведет его из этого состояния».
Формула Харди — Вайнберга отражает соотношение в популяции особей с доминантными и рецессивными признаками, относительную частоту гомозигот и гетеро-зигот, частоту аллелей по одному локусу. С помощью этой формулы можно рассчитать в заданной популяции указанные частоты. Например, в Балтиморе в популяции из 5000 человек 3200 (64%) обладают способностью свертывать язык трубочкой (доминантный признак, детерминированный геном R), а 1800 (36 %) человек такой способностью не обладают (рецессивный ген г). Следовательно, частота гомозигот гг равна 0,36, а лиц с генотипами RR и Rr - 0,64. Исходя из того, что частота гг, т. е. q2 = 0,36, q= 0,6 (√q2), атак как p + q=1, то р= 1 - q = 0,4, т. е. частота аллеля R (р) составит 0,4. По формуле Харди — Вайнберга можно определить и частоту гомозигот RR и гетерозигот Rr. Если р = 0,4, то р2 = 0,16, т. е. частота лиц с генотипом RR составит 16 %. Частота гетерозигот равна 2pq — 0,48, или 48 % (2·0,4·0,6).
Таким образом, пользуясь формулой Харди — Вайнберга и имея данные по частоте встречаемости в популяции какого-либо рецессивного признака (например, альбинизм, глухота), можно определить примерную частоту гена и гетерозиготных носителей его в популяции. Она демонстрирует связь между частотами аллелей одного гена, соотношение в популяции особей с генотипами АА, Аа и аа, отражает закономерности наследования только в панмиктических популяциях и для самоопылителей неприменима.
Однако и в популяциях свободно скрещивающихся особей эта формула пригодна лишь для простых случаев моногенного аутосомного наследования. При этом частота определенных фенотипов зависит не только от частоты аллеля, но и от того, доминантен он или рецессивен. Проявление доминантного признака в свою очередь связано как с частотой контролирующего его гена в популяции, так и со степенью выраженности (экспрессивности) и пенетрантности самого признака.
Формула Харди — Вайнберга может быть применима для определения частот генов и генотипов лишь на какой-то данный момент в заданной популяции, где соблюдаются следующие необходимые условия:
ü популяция должна быть достаточно многочисленной, чтобы избежать ошибок в статистическом анализе;
ü все особи популяции должны обладать одинаковой вероятностью к скрещиванию;
ü все особи должны с одинаковой вероятностью образовывать все типы гамет;
ü все типы гамет должны быть одинаково жизнеспособными;
ü мутации гена, по которому ведется расчет, должны быть очень редкими, чтобы их частотой можно было бы пренебречь, или же частота прямых и обратных мутаций должна быть одинаковой;
ü все особи должны быть одинаково жизнеспособными, т. е. исключается действие естественного отбора;
ü популяция должна быть максимально изолированной, апроцессы миграции редкими или же вовсе отсутствовать.
Эти условия в природных популяциях нереальны. Популяция постоянно меняет свою генетическую структуру вследствие возникновения новых мутаций, действия естественного отбора, миграции особей одной популяции в другую и т. д. Изменение равновесного состояния по аллелям и генотипам в популяции характеризует изменчивость ее, т. е. генетическую динамику.