Биоэлектрические явления живых образований (понятие о мембранном потенциале покоя, потенциал действия, понятие о волне возбуждения)
Биоэлектрические потенциалы (биотоки) — электрические явления, наблюдаемые в живых клетках в покое и при физиологической деятельности.
Возникновение в живых клетках электрических потенциалов и обусловленных ими биотоков связано с физико-химическими свойствами клеточных мембран и компонентов цитоплазмы (аминокислот, белков, ионов). Между наружной поверхностью клеточной мембраны и внутренним содержимым клетки существует всегда разность потенциалов, которая создается в силу различной концентрации ионов К+, Na+, Cl- внутри и вне клетки и различной проницаемости для них клеточной мембраны. Эта разность потенциалов называется «током покоя», или мембранным потенциалом.
Изменения потенциала покоя при различных функциональных состояниях клетки имеют названия: «потенциалы действия».
Механизм возникновения наиболее распространенной формы активной электрической реакции — потенциала действия, связанного с распространяющейся волной возбуждения,— можно представить следующим образом. Необходимым условием возникновения распространяющегося возбуждения является снижение величины потенциала покоя (деполяризация) до определенной величины (истинный порог возбуждения клетки). Механизм возбуждения деполяризацией мембраны универсален; такое возбуждение возникает не только при электрическом, но и при любых других видах раздражения, в том числе при адекватных раздражениях рецепторных окончаний. Когда деполяризация достигает критического уровня (различного для разных типов клеток), стремительно развивается кратковременное повышение ионной проницаемости клеточной мембраны для таких ионов, которые в покоящемся состоянии с трудом проходят через мембрану.
Изменение с возрастом показателей функционального состояния возбудимых образований.
Значение нервной системы. Общая схема строения и основные этапы ее развития.
Нервная система регулирует и координирует деятельность всех органов и систем, обусловливая целостность функционирования организма. Благодаря ей осуществляется связь организма с внешней средой и его адаптация к постоянно меняющимся условиям. Нервная система является материальной основой сознательной деятельности человека, его мышления, поведения, речи. К центральной нервной системе относятся головной и спинной мозг. Оба они эволюционно, морфологически и функционально связаны между собой и без резкой границы переходят друг в друга.
Функции нервной системы
1. Обеспечивает связь организма с внешней средой.
2. Обеспечивает взаимосвязь всех частей организма между собой.
3. Обеспечивает регуляцию трофических функций, т.е. регулирует обмен веществ.
4. Нервная система, в частности головной мозг, является субстратом психической деятельности.
Функционально нервная система подразделяется на соматическую и автономную (вегетативную),анатомически – на центральную
нервную систему и периферическую нервную систему .
Соматическая нервная система регулирует работу скелетных мышц и обеспечивает чувствительность человеческого тела. Автономная (вегетативная) нервная система регулирует обмен веществ, работу внутренних органов и гладких мышц. 63
Вегетативная нервная система иннервирует все внутренние органы. Она обеспечивает также трофическую иннервацию скелетных мышц, других органов и тканей и самой нервной системы.
Периферическая нервная система образована многочисленными парными нервами, нервными сплетениями и узлами. Нервы доставляют импульсы из ЦНС непосредственно к рабочему органу – мышце – и информацию с периферии в ЦНС. Основными элементами нервной системы являются нервные клетки (нейроны). Подтверждение клеточной теории строения нервной системы было получено с помощью электронной микроскопии, показавшей, что мембрана нервной клетки напоминает основную мембрану других клеток. Она представляется сплошной на всем протяжении поверхности нервной клетки и отделяет от других клеток. Каждая нервная клетка является анатомической, генетической и метаболической единицей, как и клетки других тканей организма. В нервной системе человека содержится около 100 млрд нервных клеток. Поскольку каждая нервная клетка функционально связана с тысячами других нейронов, количество возможных вариантов таких связей близко к бесконечности. Нервную клетку следует рассматривать как один из уровней организации нервной системы, связующих молекулярный, синаптические, субклеточные уровни с надклеточными уровнями канальных нейронных сетей, нервных центров и функциональных систем мозга, организующих поведение.
Нейрон: строение, функции. Виды нейрона. Развитие нейрона .
Нейрон – структурно-функциональная единица нервной системы, представляет собой электрически возбудимую клетку, которая обрабатывает и передает информацию посредством электрических и химических сигналов.
Развитие нейрона.
Нейрон развивается из небольшой клетки-предшественницы, которая перестаёт делиться ещё до того, как выпустит свои отростки. (Однако вопрос о делении нейронов в настоящее время остаётся дискуссионным.) Как правило, первым начинает расти аксон, а дендриты образуются позже. На конце развивающегося отростка нервной клетки появляется утолщение неправильной формы, которое, видимо, и прокладывает путь через окружающую ткань. Это утолщение называется конусом роста нервной клетки. Он состоит из уплощенной части отростка нервной клетки с множеством тонких шипиков. Микрошипики имеют толщину от 0,1 до 0,2 мкм и могут достигать 50 мкм в длину, широкая и плоская область конуса роста имеет ширину и длину около 5 мкм, хотя форма её может изменяться. Промежутки между микрошипиками конуса роста покрыты складчатой мембраной. Микрошипики находятся в постоянном движении — некоторые втягиваются в конус роста, другие удлиняются, отклоняются в разные стороны, прикасаются к субстрату и могут прилипать к нему.
Конус роста заполнен мелкими, иногда соединёнными друг с другом, мембранными пузырьками неправильной формы. Непосредственно под складчатыми участками мембраны и в шипиках находится плотная масса перепутанных актиновых филаментов. Конус роста содержит также митохондрии, микротрубочки и нейрофиламенты, аналогичные имеющимся в теле нейрона.
Вероятно, микротрубочки и нейрофиламенты удлиняются главным образом за счёт добавления вновь синтезированных субъединиц у основания отростка нейрона. Они продвигаются со скоростью около миллиметра в сутки, что соответствует скорости медленного аксонного транспорта в зрелом нейроне. Поскольку примерно такова и средняя скорость продвижения конуса роста, возможно, что во время роста отростка нейрона в его дальнем конце не происходит ни сборки, ни разрушения микротрубочек и нейрофиламентов. Новый мембранный материал добавляется, видимо, у окончания. Конус роста — это область быстрого экзоцитоза и эндоцитоза, о чём свидетельствует множество находящихся здесь пузырьков. Мелкие мембранные пузырьки переносятся по отростку нейрона от тела клетки к конусу роста с потоком быстрого аксонного транспорта. Мембранный материал, видимо, синтезируется в теле нейрона, переносится к конусу роста в виде пузырьков и включается здесь в плазматическую мембрану путём экзоцитоза, удлиняя таким образом отросток нервной клетки.
Росту аксонов и дендритов обычно предшествует фаза миграции нейронов, когда незрелые нейроны расселяются и находят себе постоянное место.
Нервная клетка — нейрон — является структурной и функциональной единицей нервной системы. Нейрон — клетка, способная воспринимать раздражение, приходить в состояние возбуждения, вырабатывать нервные импульсы и передавать их другим клеткам. Нейрон состоит из тела и отростков — коротких, ветвящихся (дендритов) и длинного (аксона). Импульсы всегда движутся по дендритам к клетке, а по аксону — от клетки.
Виды нейронов
Нейроны, передающие импульсы в центральную нервную систему (ЦНС), называются сенсорными или афферентными. Моторные, или эфферентные, нейроны передают импульсы от ЦНС к эффекторам, например к мышцам. Те и другие нейроны могут связываться между собой с помощью вставочных нейронов (интернейронов). Последние нейроны еще называются контактными или промежуточными.
В зависимости от числа и расположения отростков нейроны делятся на униполярные, биполярные и мультиполярные.
Рис. 33. Схема строения нервной клетки (нейрона): 1 — дендриты; 2 — тело клетки (перикарион); 3 — коллатераль; 4 — обкладочная клетка; 5 — аксон; 6 — ветвление аксона |
Строение нейрона
Нервная клетка (нейрон) состоит из тела (перикариона) с ядром и нескольких отростков(рис. 33).
Перикарион является метаболическим центром, в котором протекает большинство синтетических процессов, в частности, синтез ацетилхолина. В теле клетки есть рибосомы, микротрубочки (нейротрубочки) и другие органоиды. Нейроны формируются из клеток-нейробластов, которые еще не имеют выростов. От тела нервной клетки отходят цитоплазматические отростки, число которых может быть различным.
Короткие ветвящиеся отростки, проводящие импульсы к телу клетки, называются дендритами. Тонкие и длинные отростки, проводящие импульсы от перикариона к другим клеткам или периферическим органам, называются аксонами. Когда в процессе формирования нервных клеток из нейробластов происходит отрастание аксонов, способность нервных клеток делиться утрачивается.
Концевые участки аксона способны к нейросекреции. Их тонкие веточки со вздутиями на концах соединяются с соседними нейронами в специальных местах — синапсах. Вздутые окончания содержат мелкие пузырьки, наполненные ацетилхолином, играющим роль нейромедиатора. Есть в пузырьках и митохондрии (рис. 34). Разветвленные отростки нервных клеток пронизывают весь организм животного и образуют сложную систему связей. На синапсах возбуждение передается от нейрона к нейрону или к мышечным клеткам. Материал с сайтаhttp://doklad-referat.ru
Рис. 34. Синаптическое соединение: 1 — нервные филаменты; 2 — митохондрии; 3 — синаптические пузырьки; 4 — синаптическая щель |
Функции нейронов
Основная функция нейронов — обмен информации (нервными сигналами) между частями тела. Нейроны восприимчивы к раздражению, т. е. способны возбуждаться (генерировать возбуждение), проводить возбуждения и, наконец, передавать его другим клеткам (нервным, мышечным, железистым). По нейронам проходят электрические импульсы, и это делает возможной коммуникацию между рецепторами (клетками или органами, воспринимающими раздражение) и эффекторами (тканями или органами, отвечающими на раздражение, например мышцами).