Некоторые последствия первичных ИД. 11 страница
Во-вторых, активация защитных механизмов в ответ на тяжелую травму сопровождается включением антиноцицептивной защиты (см. главу по патофизиологии боли). Но здесь следует отметить, что повышение содержания эндогенных опиатов, которое должно было бы носить при тяжелой травме защитный характер, на самом деле нередко оборачивается для организма непоправимой катастрофой. Дело в том, что чрезмерная стимуляция всех звеньев ГГАС, всегда сопровождающая тяжелую травму, приводит к высвобождению большого количества энкефалинов и эндорфинов, которые, кроме блокады опиатных рецепторов, выполняют еще ряд функций в организме. В первую очередь, — это участие в регуляции кровообращения и дыхания. В настоящее время известно, что эндорфины способны нарушать регуляцию кровообращения и способствовать развитию неуправляемой гипотензии.
Таким образом, эфферентные проявления болевого синдрома, приводящие к чрезмерной стимуляции ГГАС, не только не защищают организм от травмы, а, напротив, способствуют развитию глубоких повреждений важнейших систем жизнеобеспечения организма и развитию травматического шока.
Далее приведу краткую характеристику стадий проявления травматического шока.
Во время эректильной стадии у больного возникает речевое и двигательное возбуждение: он мечется, остро реагирует даже на обычное прикосновение; кожные покровы бледные из-за спазма микрососудов кожи; зрачки расширены в связи с активацией симпатоадреналовой системы; показатели центрального кровообращения и дыхания повышены.
На смену первой стадии приходит вторая — торпидная. Классическая клиническая картина ее описана еще Н.И. Пироговым (1865): «С оторванной рукою или ногою лежит такой окоченелый на перевязочном пункте неподвижно; он не кричит, не жалуется, не принимает ни в чем участия и ничего не требует; тело его холодно, лицо бледно; взгляд неподвижен и обращен в даль, пульс как нитка, едва заметен под пальцем. На вопросы окоченелый или вовсе не отвечает, или только про себя, чуть слышным шепотом; дыхание также едва приметно. Рана и кожа почти вовсе не чувствительны ... Окоченелый не потерял совершенно сознания, он не то что вовсе не осознает своего страдания».
Обычно больные с тяжелым травматическим шоком погибают от прогрессирующих расстройств кровообращения, дыхательной или почечной недостаточности. В легких возникают нарушения микроперфузии, возрастает шунтирование крови, ухудшаются диффузионные свойства альвеолярно-капиллярных мембран вследствие их набухания и развития интерстициального отека. Нарушения газообменной функции легких при травматическом шоке представляют собой очень опасное явление, требующее экстренного вмешательства («шоковое легкое»).
Редукция кровообращения и микроциркуляторные расстройства в почках приводят к их недостаточности, проявляющейся олигурией (или анурией), азотемией и другими нарушениями. На поздних стадиях шока в почках, наряду с резкими расстройствами микроциркуляции, возможна блокада канальцевого аппарата вследствие образования гиалиновых и миоглобиновых цилиндров («шоковая почка»). В тяжелых случаях при травматическом шоке развивается кишечная аутоинтоксикация.
Отметим, что течение шока в детском возрасте имеет свои особенности. Самая характерная черта травматического шока в раннем возрасте — это способность детского организма длительно поддерживать нормальный уровень АД даже после тяжелой травмы. Длительная и стойкая централизация кровообращения при отсутствии лечения внезапно сменяется декомпенсацией гемодинамики. Поэтому чем младше ребенок, тем более неблагоприятным прогностическим признаком при шоке является артериальная гипотония.
Гемотрансфузионный шок. Непосредственной причиной гемотрансфузионного шока может быть несовместимость крови донора и реципиента по групповым факторам АВО, резус-фактору или индивидуальным антигенам. Шок может развиться, а его течение значительно усугубится в случаях, когда используется недоброкачественная кровь (с гемолизом, денатурацией белка, бактериальным загрязнением и т.д.).
Первые признаки шока могут появляться уже во время трансфузии (при групповой несовместимости) или в ближайшие часы (при резус-несовместимости или при несовместимости по индивидуальным антигенам).
В возникновении гемотрансфузионного шока при групповой или резус-несовместимости главным патогенетическим фактором является массивная агглютинация и образование конгломератов эритроцитов с последующим их гемолизом. В результате резко изменяются физико-химические свойства крови. Полагают, что эти изменения служат пусковым механизмом шока в результате чрезвычайного раздражения широкого рецептивного поля сосудистого русла. Значительный внутрисосудистый гемолиз приводит к резкому ухудшению кислородтранспортных функций крови и развитию гемической гипоксии, тяжесть которой в дальнейшем нарастает в результате расстройств кровообращения.
Проявления. В эректильной стадии возникает двигательное возбуждение, отмечается частое дыхание с затрудненным выдохом, чувство жара, боли в разных частях тела (особенно в области почек). Может повышаться системное артериальное давление и возникать тахикардия.
Первая стадия быстро сменяется второй (торпидной). Возникает общая слабость, покраснение кожных покровов сменяется резкой бледностью, нередко возникают тошнота и рвота. На фоне общей гиподинамии могут развиться судороги, АД падает. Для этого вида шока характерны (в значительной мере определяют тяжесть состояния) нарушения функции почек (так называемый гемотрансфузионный нефроз). Появление олигурии или анурии при гемотрансфузионном шоке всегда служит признаком опасного ухудшения состояния больного.
Кардиогенный шок — это критическое состояние, которое развивается вследствие острой артериальной гипотензии, обусловленной резким падением насосной функции левого желудочка. Первичное звено патогенеза кардиогенного шока — это быстрое снижение ударного объема левого желудочка, которое приводит к артериальной гипотензии, несмотря на компенсаторный спазм резистивных сосудов и рост общего периферического сосудистого сопротивления, направленные на восстановление артериального давления.
Артериальная гипотензия и снижение кровотока по обменным капиллярам вследствие спазма мельчайших артерий, артериол и прекапиллярных сфинктеров нарушают кровоток в органах на периферии и вызывают основные симптомы кардиогенного шока. А именно: нарушения сознания; бледность кожи, холодные и влажные конечности; олигурия (<20 мл/ч); артериальная гипотензия (систолическое АД < 90 мм рт.ст.).
Кардиогенный шок возникает, по данным многих авторов, в 12–15 % случаев инфаркта миокарда. Возникновение кардиогенного шока зависит от размеров зоны поражения миокарда, его исходного состояния, центрального кровообращения, а также от функциональных особенностей ноцицептивной и антиноцицептивной системы и других факторов, определяющих реактивность организма.
При поражении 50–65 % массы миокарда возникает либо фибрилляция сердца, либо острая недостаточность кровообращения. При этом шок может не возникнуть. Кардиогенный шок чаще развивается при поражении меньшей массы миокарда (до 50 %) на фоне резких болевых ощущений, сопровождающихся хаотическим возбуждением различных вегетативных центров и расстройствами нейроэндокринной регуляции кровообращения и других физиологических систем.
Хочу обратить внимание на такую принципиальную отличительную черту патогенеза данного вида шока. Артериальная гипотензия, возникающая из-за травматического шока, — это не ведущее звено патогенеза данного патологического состояния, а следствие несостоятельности компенсации травматического шока, при котором патологические сдвиги в органах и тканях образуются задолго до снижения артериального давления. При кардиогенном шоке, наоборот, артериальная гипотензия сразу же начинает выступать одним из основных звеньев патогенеза.
Компенсаторные реакции в ответ на артериальную гипотензию и циркуляторную гипоксию при кардиогенном шоке почти идентичны таковым у больных в состоянии травматического или гиповолемического шока. В частности, они включают:
• преимущественно нейрогенный спазм вен в результате усиления симпатических сосудосуживающих влияний;
• активацию ренин-ангиотензин-альдостеронового механизма, в том числе и в результате системной адренергической стимуляции;
• компенсаторную аутогемодилюцию, т.е. мобилизацию жидкости из интерстициального сектора в сосудистый вследствие изменения на системном уровне состношения между пре- и посткапиллярным сосудистым сопротивлением.
Биологическая цель таких компенсаторных реакций понятна — поддержание МОК и артериального давления через рост общего венозного возврата, задержку в организме натрия и воды, увеличение внутрисосудистого жидкостного сектора и возрастание ОПСС. При кардиогенном шоке эти защитные реакции увеличивают пре- и постнагрузку, а значит, повышают утилизацию свободной энергии кардиомиоцитами. Рост работы клеток сократительного миокарда повышает несоответствие между потребностью сердца в кислороде и доставкой к нему О2. В результате растет масса гипоксичного и гибернирующего миокарда, и еще больше падает его сократимость.
Из сказанного следует: основная патофизиологическая особенность кардиогенного шока заключается в том, что компенсаторным реакциям изначально присущи свойства звеньев патогенеза, действие которых обусловливает прогрессирование шока и приобретение им необратимого характера. Кроме того, при кардиогенном шоке поражен основной эффектор компенсаторных реакций, направленных на поддержание минутного объема кровообращения, — сердце.
Принципы противошоковой терапии
Противошоковая терапия при различных его видах во многом сходная, однако в каждом конкретном случае обязательно учитываются причина шока, особенности его патогенеза и характер имеющихся нарушений. Если это оказывается возможным, прежде всего устраняется причина, вызвавшая развитие шока.
Хочу подчеркнуть два момента: 1) важнейшим принципом терапии шоковых состояний является устранение болевого синдрома; 2) стратегическая цель терапии — это восстановление перфузии в русле микроциркуляции.
Кратко рассмотрим основные принципы терапии. Для устранения гиповолемии и нарушений водного баланса используется переливание консервированной крови, плазмы и других жидкостей. Внутривенное вливание жидкости с повышением ОЦП ведет к повышению АД и увеличению сердечного выброса, а также к снижению периферического сопротивления сосудов. Одновременно проводится коррекция электролитного статуса и кислотно-основного состояния.
При наличии дыхательной недостаточности, особенно периодического дыхания и апноэ, немедленно используют искусственную вентиляцию легких.
Проводится также комплекс мер, направленных на снижение степени токсемии. Для этого используют антидоты, блокаторы БАВ (гитамина, кининов и др.), глюкокортикоиды, вводят гемодез, глюкозу, применяют гемосорбцию и гемодиану и т.д.
Коматозные состояния
Кома(от греч. «koma» – глубокий сон) – тяжелое патологическое состояние, характеризующееся угнетением ВНД, которое проявляется потерей сознания, расстройством рефлекторной деятельности и глубокими нарушениями дыхания, кровообращения и метаболизма.
Первичная кома(неврологическая) развивается вследствие первичного поражения ЦНС (инсульт, травма, инфекция, опухоль).
Вторичная— в результате эндо- или экзогенной интоксикации ЦНС.
Ведущими звеньями в патогенезе любого вида комы являются: 1) прямое угнетение деятельности ЦНС токсическими продуктами; 2) нарушения мозгового кровообращения, ведущие к гипоксии нервных центров.
Различают 4 стадииили глубины комы:
1. Легкая кома.Больной не реагирует на обращение к нему, может открывать глаза, но взгляда не фиксирует.
2. Кома средней тяжести. Исчезают целенаправленные, защитные реакции (реакция на боль), но сохраняются сухожильные и периостальные рефлексы, а также вегетативные функции (дыхание, кровообращение, глотание и др.), появляются патологические рефлексы (Бабинского, Россолимо и др.).
3. Глубокая кома. Угнетение и утрата вегетативных функций (расширение зрачков с отсутствием их реакции на свет, расстройство глотания, изменение частоты и ритма дыхания, гипо- и гипертермия, артериальная гипотензия, тахи- или брадикардия) свидетельствуют о тяжелом нарушении всех функций головного мозга.
4. Терминальная кома. Остановка дыхания, падение АД до критических величин (систолического <70 мм рт. ст.), полная арефлексия. Эти симптомы свидетельствуют о необратимом прекращении всех функций головного мозга.
Независимо от причины, вызвавшей умирание, организм перед смертью проходит ряд стадий или этапов умирания, называемых терминальными состояниями. Терминальные состояния являются обратимыми этапами умирания, из которых организм при оказании надлежащей помощи может быть выведен.
Преагональное состояние характеризуется заторможенностью, спутанностью сознания, АД не определяется, отсутствием пульса на периферических артериях (определяется на сонных, бедренных и по сердечным сокращениям), одышкой, побледнением или цианозом. Длительность от десятка минут до нескольких часов.
Терминальная пауза характеризуется временным прекращением дыхания на 30 сек – 1,5 мин и снижением АД почти до нуля, угасанием рефлекторной деятельности, в том числе глазных рефлексов. В этот период происходит углубление процессов торможения в коре головного мозга и полное выключение ее функций, происходят резкие сдвиги в обмене веществ, быстро нарастает метаболический ацидоз. Процессы распада начинают преобладать над процессами синтеза.
Период агонии. Длительность в среднем 2–5 мин. Это последний этап борьбы организма за сохранение жизни. Характеризуется глубоким нарушением всех жизненных функций организма и торможением отделов ЦНС, лежащих выше ствола мозга. Вновь появляется редкое глубокое дыхание и нередко происходит небольшое кратковременное, но отчетливое повышение АД до 15–20 мм рт. ст. Сознание и глазные рефлексы отсутствуют. Но могут кратковременно восстановиться.
Клиническая смерть (КС) — последний обратимый этап умирания, характеризующийся отсутствием внешних признаков жизни (сердечной деятельности, дыхания, рефлексов, сознания, мышечного тонуса), наличием трупного цвета кожи, но сохранением в тканях обменных процессов, протекающих на минимально низком уровне. В условиях нормотермии сроки обратимой КС 3–4 мин и максимум 5–6 мин для человека. Если умирание происходит медленно и мозг длительное время находился в условиях резко ограниченного снабжения кровью, то кора мозга может безвозвратно погибнуть до прекращения дыхания и сердечной деятельности. При очень быстром умирании (2–3 мин) обратимая КС может оказаться более длительной.
Клиническая смерть переходит в истинную или биологическую смерть, характеризующуюся появлением необратимых изменений, прежде всего в высших отделах ЦНС, а затем в других тканях организма, в том числе и на клеточном уровне. Достоверные признаки – посмертные изменения (трупное окоченение, трупные пятна и др.).
Прогноз эффективности возможных реанимационных мероприятий при травмах, если не поврежден череп, следующий: длительность КС – 4 мин — прогноз относительно благоприятен; 5–10 мин — сомнителен; 20–22 мин — крайне сомнителен; больше 22 мин — абсолютно безнадежен.
Неодновременность умирания отдельных систем, в частности отдельных частей ЦНС, является первым потенциальным условием возможности оживления. Вторым условием будет сохранение во время КС в клетках и тканях обмена веществ на минимально низком уровне.
Основной принцип оживления — это как можно более раннее и полное восстановление функции ЦНС, сердца и дыхания («треножник жизни»). Все мероприятия по оживлению должны быть направлены на разрешение задачи – предохранение коры головного мозга от глубоких нарушений в терминальных состояниях.
Комплексная методика реанимации включает в себя:
1) ИВЛ (с использованием аппарата или ручной метод);
2) массаж сердца (прямой, непрямой);
3) дефибрилляцию сердца (электрическую и химическую);
4) внутриартериальное центрипетальное (против тока крови по направлению к сердцу) ритмическое нагнетание и внутривенное переливание крови с адреналином, глюкозой, витаминами (+перекись водорода). Внутрисердечная инъекция адреналина используется при асистолии сердца, когда ни закрытый, ни открытый массаж сердца неэффективен.
Критерии эффективности реанимации:1) появление пульса на сонных и лучевых артериях; 2) уменьшение цианоза; 3) сужение до того расширенных зрачков; 4) увеличение АД до 60–70 мм рт. ст.
В постреанимационном периоде различают несколько стадий:
1. Стадия временной стабилизации функций — наступает через 10-12 часов от начала реанимации и характеризуется появлением сознания, стабилизацией дыхания, кровообращения, метаболизма. Независимо от дальнейшего прогноза состояние больного улучшается.
2. Стадия повторного ухудшения состояния — начинается в конце первых, начале вторых суток. Состояние больного ухудшается, нарастает гипоксия из-за дыхательной недостаточности, развивается гиперкоагуляция, гиповолемия из-за плазмопотери или повышенной сосудистой проницаемости. Микротромбозы и жировая эмболия нарушают микроперфузию внутренних органов.
На этой стадии развивается ряд синдромов, из которых формируется «постреанимационная болезнь» и может наступить отсроченная смерть:
а) Кардиопульмональный синдром, вызывается осложнениями реанимационных мероприятий и характеризуется острейшей сердечной и дыхательной недостаточностью.
б) Печеночно-почечный синдром, обусловлен длительным тяжелым гипоксическим повреждением паренхиматозных органов и развитием острой печеночной и почечной недостаточности и соответствующих коматозных состояний.
в) Постгипоксическая энцефалопатия, вызывается тяжелой гипоксией, длительной КС и характеризуется функциональной и органической психоневрологической симптоматикой.
г) Постаноксическая эндокринопатия, возникает при реанимации в результате стрессорного и гипоксического поражения эндокринной системы с высокой биохимической активностью и регенераторной способностью. Начальное возбуждение симпатоадреналовой и кортикостероидной системы сменяется их истощением и дисбалансом гормонов.
д) Респираторная смерть мозга, может наступить при слишком интенсивной неадекватной ИВЛ с массивным вымыванием СО2и значительной задержкой восстановления самостоятельного дыхания или его стабилизации (приводит к резкому повышению проницаемости сосудов головного мозга и его отеку).
е) Синдром постреанимационных иммунных нарушений, развивается в результате повреждения при умирании лимфоидной ткани тяжелой гипоксией. Страдают все звенья иммунитета: неспецифические, клеточные и гуморальные (как следствие возникают инфекционные и воспалительные осложнения).
ж) Постгипоксическая гастроэнтеропатия, характеризуется множеством эрозий и кровоизлияний в ЖКТ.
3. Стадия нормализации функций.Означает начало выздоровления пациента. Процесс этот долгий. Зависит от тяжести умирания, длительности КС, перенесенной гипоксии. Больных нужно наблюдать в течение года после выздоровления.
Глава 17
Дисфункция микрососудов в патогенезе ишемического
и реперфузионного повреждения клеток
Звеном патогенеза многих болезней и патологических состояний является несоответствие тока крови по микрососудам потребностям клеток на периферии. Данное несоответствие обычно вызывается расстройствами местной регуляции. Под микроциркуляцией понимают часть сосудистого русла органа, ткани или их частей, которую нельзя наблюдать невооруженным глазом. В этой связи можно считать, что микроциркуляцию составляют (микрососудами являются) артерии небольшого диаметра, соответствующие им по размеру вены, артериолы, венулы и капилляры. На уровне микроциркуляции (микрососудов) происходит транспорт нутриентов, кислорода и метаболитов (субстратов и продуктов) в клетку и в обратном направлении, в интерстиций и кровь. Ток крови по микрососудам находится под контролем системных регуляторных влияний, осуществляемых преимущественно симпатической частью автономной нервной системы. Регуляторные влияния симпатической части автономной нервной системы в основном приводят к вазоконстрикции. Основным медиатором вазоконстрикции является норадреналин. Интенсивность вазоконстрикции в ответ на высвобождение норадреналина нервными окончаниями определяется:
1) интенсивностью эфферентной импульсации по симпатическим нервам;
2) содержанием нейротрансмиттера норадреналина в везикулах нервных окончаний;
3) экспрессией соответствующих рецепторов на поверхности гладкомышечной клетки;
4) содержанием гладкомышечных клеток в сосудистой стенке;
5) сократимостью гладкомышечных клеток.
Действие ряда нейромедиаторов противостоит симпатическим вазоконстрикторным влияниям. Это действие ограничивает рост сосудистого тонуса, вызванный усилением симпатической стимуляции сосудистой стенки. Часть таких медиаторов составляют медиаторы неадренергической-нехолинергической нервной системы (вазоактивный интестинальный полипептид и др.). Часть является эндогенными опиоидами. Гладкомышечные клетки некоторых сосудов содержат холинергические рецепторы и рецепторы к медиаторам неадренергической-нехолинергической нервной системы.
Главная цель системной регуляции сосудистого сопротивления на периферии — это поддержание общего периферического сосудистого сопротивления на уровне, адекватном потребностям всего организма. При достижении этой цели поддерживается нормальное артериальное давление. Кроме того, системные симпатические регуляторные влияния направлены на обеспечение нормального общего венозного возврата к сердцу. В ответ на адренергическую стимуляцию стенок вен происходит их спазм, который повышает общий венозный возврат.
В микрососудах большего диаметра ток крови определяется силой трения крови об эндотелиальные клетки. Данная сила представляет собой прямую функцию объемной скорости тока крови по сосуду. Чем больше эта сила, тем больше активность постоянно присутствующей в эндотелиальных клетках синтетазы оксида азота (конституционной, конституциональной). В результате больше образуется оксида азота и сосуды расширяются. Диаметр просвета меньших по диаметру артериол и венул в основном определяется интенсивностью обмена в кровоснабжаемых клетках. Такие сосуды расширяются усилением образования оксида азота, накоплением в клетке и интерстиции протонов, двуокиси углерода, аденозинмонофосфата и других продуктов метаболизма. Иными словами, микрососуды расширяются в ответ на недостаточность улавливания клеткой свободной энергии при биологическом окислении (В.Ю. Шанин, 2000).
Оксид азота — это эндогенный вазодилятатор, который образуется из L-аргинина в эндотелиоцитах с участием фермента конституционной (постоянно присутствующей в клетках) синтетазы оксида азота. Оксид азота высвобождается эндотелиальными клетками постоянно или в ответ на рост силы трения крови и ее клеток об эндотелиоциты. Кроме того, образование оксида азота через активность конституционной синтетазы растет в ответ на взаимодействие со своими эндотелиальными рецепторами таких эндогенных лиганд, как брадикинин, серотонин, аденозиндифосфат, тромбин, гистамин и субстанция Р. Поскольку субстанция Р является медиатором нехолинергической-неадренергической нервной системы, то можно считать, что данная нервная система осуществляет свои расширяющие сосуды влияния через повышение активности конституционной синтетазы оксида азота. Оксид азота расширяет микрососуды, так как усиливает образование циклического гуанозинмонофосфата. Кроме того, что оксид азота влияет на гладкомышечные элементы сосудистой стенки, данный медиатор воздействует на тромбоциты в просвете микрососудов. Рост содержания циклического гуанозинмонофосфата в тромбоцитах под влиянием оксида азота снижает их адгезию и агрегацию. Действие оксида азота используется локальной функциональной системой, полезный результат которой — это поддержание микроциркуляции ради сохранности клеток через расширение микрососудов и предотвращение межклеточных взаимодействий. Действие оксида азота блокирует те межклеточные взаимодействия, которые нарушают периферическое кровообращение: адгезия, агрегация и др. Полагают, что данные свойства оксида азота особенно важны для предотвращения спазма и тромбоза венечных артерий.
Рост образования оксида азота (NO) эндотелиальными клетками в соответствии с принципом «отрицательной обратной связи» снижает образование NO эндотелиоцитами.
Рост образования оксида азота угнетает образование эндотелиоцитами эндотелинов. Рост высвобождения эндотелинов как мощных эндогенных вазоконстрикторов — это звено патогенеза злокачественной артериальной гипертензии. В этой связи считают, что недостаточное образование оксида азота является звеном патогенеза злокачественной артериальной гипертензии.
При воспалении в ответ на действие первичных проинфламматорных цитокинов (альфа-фактор некроза опухолей и интерлейкин-1) происходит экспрессия геномом эндотелиальной клетки индуцируемой (не постоянно присутствующей в клетке) синтетазы оксида азота. Это представляет собой один из механизмов реактивной артериальной гиперемии при воспалении.
Эндотелиальная клетка способна высвобождать вазоконстрикторы: эндотелины и др. Образование эндотелиальных факторов вазоконструкции может быть связано с изменением трансмембранного потенциала эндотелиоцитов. Эндотелины могут быть клеточными эффекторами патологических системных сосудистых реакций, злокачественной артериальной гипертензии и др.
Действие эндотелиальной клетки как исполнительного элемента патологической системы повышает чувствительность гладкомышечных клеток стенок микрососудов по отношению к регуляторным влияниям и действию медиаторов, вызывающим вазоспазм (серотонин и др.). Такие действия эндотелиоцитов составляют одно из звеньев патогенеза острого инфаркта миокарда.
Недостаточное высвобождение эндотелиальной клеткой вазодилятаторов всегда сочетается с повышенной секрецией эндотелиоцитами факторов тромбогенеза (серотонин, тромбоксан А2, аденозиндифосфат, тромбин, фактор клеточного роста тромбоцитов), а также недостаточной экспрессией эндотелиальными клетками веществ, противодействующих тромбогенезу. Все тромбогенные вещества, высвобождаемые эндотелиальной клеткой, вызывают сокращение гладкомышечных клеток и спазм микрососудов. Спазм такого происхождения особенно выражен при недостаточной экспрессии вазодилятаторов эндотелиальными клетками.
Расстройства микроциркуляции при травматическом шоке
При разных видах шока падает объемная скорость тока крови на периферии. Стаз (остановка кровотока или тока других жидкостей организма) при шоке служит отправным пунктом воспаления, лишенного защитного значения и составляющего патогенез множественной системной недостаточности у больных с тяжелыми ранениями и травмами.
Стаз почти эквивалентен ишемии. В результате стаза возникает гипоксия клеток, кровоснабжаемых по микрососудам, в просвете которых произошло замирание тока крови. Свои действия гипоксия оказывает и на эндотелиальные клетки. Гипоксичные эндотелиоциты экспрессируют селектин, интерлейкин-8, фактор активации тромбоцитов, а также межклеточную адгезивную молекулу-1 (ЭЛАМ). Это резко повышает адгезивность эндотелиальных клеток по отношению к полиморфонуклеарам и через адгезию активирует нейтрофилы. Адгезия активированных нейтрофилов представляет собой тот этап воспаления, после которого реализуется весь алгоритм патологической реакции. Воспалительная альтерация разрушает структурно-функциональные элементы органов-эффекторов, и поэтому возникает множественная системная недостаточность (В.Ю. Шанин, 2000).
После того как инфузии, анальгезия и трансфузии по показаниям восстанавливают микроциркуляцию, в тканях возникают реперфузионные повреждения, о которых мы будем говорить ниже. Расстройства микроциркуляции при шоке характеризует заполнение просвета микрососудов агрегатами активированных нейтрофилов и тромбоцитов, а также обтурация просвета венул и других микрососудов нейтрофилами и прочими клеточными эффекторами воспаления, фиксированными адгезией на поверхности эндотелиальных клеток. Одновременно с интерстициальным отеком обтурация микрососудов клетками составляет морфопатогенетическую картину сладжа (англ.sludge — грязь).
Периферический интерстициальный отек при шоке — это результат несостоятельности аварийной компенсаторной реакции, которую называют централизацией кровообращения. Ее цель — увеличение общего венозного возврата к сердцу через шунтирование крови в обход капилляров по артериоло-венулярным анастомозам. Артериоло-венулярные анастомозы мобилизуются для обходного кровотока посредством спазма прекапиллярного и посткапиллярного сфинктеров.
Спазм прекапиллярного и посткапиллярного сфинктеров вызывает циркуляторную гипоксию вплоть до ишемии в участке органа или ткани, которые снабжаются артериальной кровью по артериолам со спазмированными прекапиллярными сфинктерами. В результате циркуляторной гипоксии в клетках и тканях накапливается и диссоциирует молочная кислота. Это вызывает быстрый рост концентрации протонов в клетках и интерстиции. Известно, что содержание протонов в интер-стиции и клетках находится в обратной связи с сосудистым тонусом и степенью спазма прекапиллярного и посткапиллярного сфинктеров. В физиологических условиях посткапиллярный сфинктер действует в среде с большей концентрацией свободных ионов водорода. Поэтому местный лактатный ацидоз вначале устраняет спазм прекапиллярного сфинктера и восстанавливает поступление плазмы и клеток крови в капилляры. Сохраняющийся некоторое время спазм посткапиллярного сфинктера препятствует возвращению элементов крови в системное кровообращение. Активация гипоксией и свободными кислородными радикалами эндотелиальных клеток (превращение эндотелиальных клеток в клеточный эффектор воспаления) вызывает адгезию полиморфонуклеаров и мононуклеарных фагоцитов к эндотелиоцитам. Одновременно действие свободных радикалов превращает мононуклеарные фагоциты, постоянно присутствующие в тканях, и моноциты из циркулирующей крови в источник провоспалительных цитокинов. В результате воспалительной альтерации организм начинает терять микрососуды и другие клеточные элементы органов и тканей. Ткани с нарушениями периферического кровообращения становятся источниками цитокинов, которые, циркулируя с кровью в повышенной концентрации, вызывают системную воспалительную реакцию. Действие провоспалительных цитокинов и хемоаттрактантов на уровне венул сокращает эндотелиоциты, образуя между ними так называемые «зазоры». Это повышает проницаемость стенки микрососудов и объем ультрафильтрата, поступающий в интерстиций. Кроме того, фактором роста ультрафильтрации является связанный со стазом рост гидростатического давления в просвете микрососудов. В данном случае рост гидростатического давления особенно выражен, поскольку кровь как бы нагнетается в капилляры по артериолам при закрытом посткапиллярном сфинктере.