Происхождение многоклеточных организмов
Вероятно, 700—900 млн лет назад на Земле появились первые многоклеточные животные и растения. У растений возникновение многоклеточного уровня организации, вероятно, произошло на основе дифференциации лентообразных колоний, образовавшихся путем бокового срастания прикрепленных нитчатых форм или благодаря делению клеток последних в двух взаимно перпендикулярных направлениях (в одной плоскости). У колоний, прикрепленных одним концом к субстрату, различные участки находились в разных условиях по отношению к падающему свету, субстрату и водной среде. В связи с этим естественный отбор благоприятствовал возникновению некоторой дифференциации частей колонии. Первым шагом было возникновение полярности колонии; на одном ее конце выделялись клетки, служившие для прикрепления к субстрату (для них характерно ослабление фотосинтеза, потеря способности к делению), на другом же конце — верхушечные клетки, интенсивно делившиеся и образовавшие своего рода «точку роста» колонии. Естественный отбор благоприятствовал приобретению клетками колонии способности делиться в разных направлениях; это приводило к ветвлению, что увеличивало поверхность колонии. Деление клеток вдоль трех взаимно перпендикулярных осей или переплетениеотдельных нитей вело к возникновению многослойного «объемного» тела. В процессе его дальнейшей дифференциации сформировались многоклеточные органы, выполнявшие разные функции (фиксация на субстрате, фотосинтез, размножение). Одновременно между разными клетками растения складывалась определенная взаимозависимость, что, собственно говоря, и знаменует достижение многоклеточного уровня организации.
У животных активный образ жизни требовал более совершенной и сложной дифференциации организма, чем у растений. Сложность организации многоклеточных животных (Metazoa) и разнообразие ее конкретных форм стимулировали разработку различных гипотез о происхождении Metazoa.
Первая из них берет начало в работах Э. Геккеля, который в разработке своей теории гастреи основывался на сформулированном им биогенетическом законе, согласно которому онтогенез данного вида организмов представляет собой сжатое и сокращенное повторение (рекапитуляцию) хода филогенеза его предков (подробнее см. в ч. IV). В соответствии с этим Э. Геккель полагал, что филогенез древнейших Metazoa в определенной степени повторяется в онтогенезе современных низших многоклеточных животных (рис. 28). Согласно Геккелю, предками Metazoa были колониальные простейшие, обладавшие сферическими колониями с однослойной стенкой, подобными бластуле — одной из ранних стадий эмбрионального развития современных многоклеточных животных. Геккель назвал эту гипотетическую предковую форму «бластеей». При направленном плавании сферическая колония — бластея — ориентировалась одним полюсом вперед, как это наблюдается и у современных колониальных простейших, например у Volvox. Согласно Геккелю, на переднем полюсе колонии возникло впячивание ее стенки внутрь, подобно тому, как это происходит при инвагинационной гаструляции в онтогенезе некоторых современных Metazoa. В результате образовался многоклеточный организм — «гастрея», стенка тела которого состоит из двух слоев, экто- и энтодермы. Энтодерма окружает внутреннюю полость — первичный кишечник, открытый наружу единственным отверстием — первичным ртом. Организация гастреи соответствует принципиальному плану строения кишечнополостных (тип Coelenterata), которых Геккель и рассматривал как наиболее примитивных многоклеточных животных.
И.И.Мечников обратил внимание на то, что у примитивных кишечнополостных гаструляция происходит не путем инвагинации (впячивания одного полюса однослойного зародыша — бластулы), что характерно для более высокоорганизованных групп, а посредством миграции некоторых клеток из однослойной стенки тела внутрь (рис. 29). Там они образуют рыхлое скопление, позднее организующееся в виде стенок гастральной полости, которая прорывается наружу ротовым отверстием. Такой способ гаструляции гораздо проще, чем инвагинация, так как не требует сложного направленного и координированного смещения целого пласта клеток, и, вероятно, примитивнее инвагинации. В связи с этим Мечников модифицировал гипотезу Геккеля следующим образом. В сфероидной колонии простейших — жгутиконосцев клетки ее однослойной стенки, захватывавшие (фагоцитировавшие) пищу, мигрировали для ее переваривания внутрь, в полость колонии (подобно миграции клеток будущей энтодермы в процессе гаструляции кишечнополостных). Эти клетки образовали рыхлое внутреннее скопление — фагоцитобласт, функцией которого стало обеспечение всего организма пищей, включая ее переваривание и распределение, тогда как поверхностный слой клеток — кинобласт — осуществлял функции защиты и движения организма. Для захвата новых пищевых частиц клеткам фагоци-тобласта, по мысли Мечникова, не было необходимости возвращаться в поверхностный слой: располагаясь непосредственно под кинобластом, клетки фагоцитобласта захватывали пищевые частицы псевдоподиями, выдвигаемыми наружу в промежутках между клетками фагоцитобласта. Эта гипотетическая стадия эволюции Metazoa была названа Мечниковым фагоцителлой (или паренхимеллой); ее строение соответствует таковому паренхимулы, личинки некоторых кишечнополостных и губок. В дальнейшем как приспособление к повышению активности питания у потомков фагоцителлы произошла эпителизация фагоцитобласта с образованием первичного кишечника и возникновением ротового отверстия в том месте, где происходила преимущественная миграция клеток внутрь. По мнению некоторых ученых, это место, вероятно, соответствовало заднему по направлению движения полюсу тела, где при плавании возникают завихрения водяного потока, и поэтому условия наиболее благоприятны для захвата пищевых частиц. Гипотеза Мечникова, как и гипотеза Геккеля, рассматривает в качестве наиболее примитивных многоклеточных животных кишечнополостных и губок.
Важные сведения для понимания ранних этапов эволюции Metazoa были получены при изучении крайне примитивного многоклеточного животного трихоплакса (Trichoplax adhaerens), обнаруженного в Красном море Ф.Шульце еще в 1883 г., но детально исследованного лишь в 1970-е гг. нашего века К. Греллом и А.В.Ивановым. Трихоплакс (рис. 30) имеет уплощенное тело, лишенное полярности. Поверхность тела, обращенная вверх, покрыта плоским, а нижняя — цилиндрическим мерцательным эпителием. Внутри, между эпителиальными слоями, соответствующими кинобласту, находится полость с жидким содержимым, в котором располагаются веретеновидные и звездчатые клетки. Эти последние можно рассматривать как фагоцитобласт. Размножается трихоплакс бесполым способом — делением и почкованием. А. В. Иванов указал, что трихоплакс представляет собой как бы живую модель фагоцителлы, и предложил выделить эту форму в особый тип животных Phagocytellozoa. По-видимому, трихоплакс подкрепляет позиции гипотезы фагоцителлы И.И.Мечникова. Однако по современным представлениям непосредственными потомками фагоцителлозой среди многоклеточных были не ки-шечнополостные, а примитивные червеобразные животные, близкие по уровню организации к плоским ресничным червям — турбелляриям.
Первые ископаемые следы жизнедеятельности червеобразных многоклеточных животных известны из позднерифейских отложений. В вендское время (650—570 млн лет назад) существовали уже разнообразные животные, вероятно принадлежавшие к различным типам. Немногочисленные отпечатки мягкотелых вендских животных известны из разных районов всех континентов земного шара, кроме еще малоисследованной Антарктиды. Ряд интересных находок был сделан в позднепротерозойских отложениях на территории России — на Кольском полуострове, в Архангельской области, на реке Мая и на Оленекском поднятии в Якутии и т. д.
Наиболее известна богатая позднепротерозойская фауна, обнаруженная в Центральной Австралии в районе Эдиакары к северу от г. Аделаида. Исследовавший эту фауну М. Глесснер считает, что она включает несколько десятков видов очень разнообразных многоклеточных животных, относящихся к разным типам (рис. 31). Большинство форм принадлежат, вероятно, к кишечнополо-стньм. Это медузоподобные организмы, вероятно «парившие» в толще воды (Ediacara flindersi, Beltanella gilesi, Medusinites asteroides и др.), и прикрепленные к морскому дну полипоидные формы, одиночные или колониальные, напоминающие современных кораллов альционарий, или морские перья (Rangea longa, Arborea arborea, Pteridinium simplex и др.). Замечательно, что все они, как и другие животные эдиакарской фауны, лишены твердого скелета.
Кроме кишечнополостных в составе эдиакарской фауны найдены остатки червеобразных животных, причисляемых к плоским и кольчатым червям (Spriggina flounderi и разные виды Dickinsonia). Некоторые виды организмов интерпретируют как возможных предков членистоногих (Praecambridium sigillum, напоминающий по характеру сегментации тела трилобитов и хелицеровых) и игло-кожих (Tribrachidium heraldicum с телом дисковидной формы, на плоской поверхности которого выступают три валика, и Arkaria adami с пятилучевой звездообразной впадиной на ротовой стороне тела и с подобием амбулакральных желобков). Наконец, имеется целый ряд ископаемых организмов неизвестной таксономической принадлежности.
Многие вендские организмы были обнаружены также в вендских отложениях разных районов России: медузоподобные эдиакария и медузинитес — на полуострове Рыбачьем, птеридиниум — на севере Якутии, напоминающая сприггину вендия — в районе Яренска Архангельской области и т. д. Местонахождения вендской фауны, по богатству не уступающие эдиакарскому, были найдены на реке Сюзьма на Онежском полуострове и на Зимнем берегу Белого моря. Здесь были обнаружены ископаемые остатки свыше 30 видов бесскелетных многоклеточных животных, размеры которых варьировали от 3 мм до 30 см. Среди них вероятные представители кишечнополостных, плоских и кольчатых червей, членистоногих, иглокожих, а также ряд форм, принадлежащих к каким-то неизвестным группам. Вообще родство вендских организмов с современными группами, большинство из которых достоверно известно начиная с кембрия, остается проблематичным — различия очень велики, и некоторые исследователи считают, что известные ныне вендские организмы не связаны прямым родством с более поздними кембрийскими, а представляют слепые эволюционные ветви.
М.А.Федонкин, исследовавший Беломорскую фауну вендских животных, полагает, что некоторые из этих организмов обладают признаками нескольких разных типов животных и могут представлять исходные формы, занимающие промежуточное положение. Федонкин обратил также внимание на сходство ряда вендских организмов с личиночными стадиями некоторых современных животных, хотя вендские организмы имеют значительно более крупные размеры, чем соответствующие личинки. При всем разнообразии планов строения тела у организмов вендской фауны («вендобионтов») их объединяют некоторые общие черты организации: отсутствие скелета, конечностей, вероятно, также ды-хательньк и пищеварительных органов. Многие вендобионты вели неподвижный прикрепленный образ жизни. Некоторые исследователи полагают, что вендские организмы питались осмотически через поверхность тела или же с помощью живших в их теле фото- или хемосинтезирующих симбионтов — одноклеточных водорослей и бактерий.
Хотя среди вендских животных преобладают мягкотелые бесскелетные формы, вероятно, в те времена существовали уже и немногие виды, обладавшие раковиной. Такова, например, Cloudina, имевшая простую трубчатую раковину, состоявшую из органического вещества и кальцита. Клаудина была обнаружена в карбонатных породах, которые переслаиваются с отложениями, содержащими остатки эдиакарской фауны мягкотелых животных.
Все эти данные указывают на широкое распространение фаун мягкотелых животных в вендское время. Накопление материалов по вендским ископаемым организмам позволило некоторым исследователям поставить вопрос о расширении рамок фанерозоя, с включением в его состав «эдиакария» — периода, охватывающего промежуток времени от 670 до 550 млн лет назад.
Поскольку вендская фауна столь разнообразна и включает довольно высокоорганизованных животных, очевидно, что до ее возникновения эволюция Metazoa продолжалась уже очень долго. Вероятно, многоклеточные животные появились значительно раньше — где-то в промежутке 700—900 млн лет назад (недавно появились первые данные об ископаемых остатках многоклеточных животных, найденных в Канаде и в Китае в породах, имеющих такой геологический возраст и отделенных от пород с остатками эдиакарских организмов слоями ледниковых отложений (тиллитов)).
Таким образом, в позднем протерозое (600-650 млн лет назад) уже существовали такие группы многоклеточных животных, как губки, кишечнополостные, плоские и кольчатые черви и даже, возможно, предки членистоногих. Судя по достигнутому уровню организации, можно предполагать, что к этому времени обособились также эволюционные стволы нитчатых червей (тип Nemathelminthes), предков моллюсков и предков вторичноротых животных — олигомерных червей.
Докембрийский филогенез Metazoa можно гипотетически представить следующим образом (рис. 32). От колониальных жгутиковых (по мнению ряда авторов — от гетеротрофных форм, принадлежавших к отряду Protomonadida) путем дифференциации и интеграции колонии, с миграцией внутрь колонии клеток фагоцитобласта на заднем полюсе тела, возникли первые многоклеточные животные, организация которых соответствовала фа-гоцителле (по И. И. Мечникову). Мало изменившимися потомками этих древнейших многоклеточных являются современные Phagocytellozoa (Trichoplax adhaerens). Примитивные многоклеточные были свободноплавающими (за счет работы мерцательного эпителия — кинобласта) животными, питавшимися различными микроорганизмами — простейшими и одноклеточными водорослями.
При дальнейшем развитии приспособлений к активному питанию происходила постепенная эпителизация фагоцитобласта, т. е. преобразование рыхлого скопления клеток в организованный клеточный пласт — эпителий кишечника. Эпителизация фагоцитобласта, вероятно, началась с развития на заднем по движению полюсе тела постоянного ротового отверстия. Как отметил К. В. Беклемишев, на этой стадии филогенеза организм стал питаться как целое, а не как совокупность отдельных самостоятельно фагоцитирующих клеток. Вероятно, к этому времени сформировалась и интегрирующая организм нервная система в виде эпителиального нервного сплетения. Активное плавание требовало способности ориентироваться в пространстве и координировать работу всех органов. Для осуществления этих функций на аборальном (противоположном ротовому отверстию) полюсе тела возник нейро-рецепторный комплекс, включавший нервный ганглий, осязательные щетинки и статоцист (орган равновесия). Подобный аборальный орган имеется у современных гребневиков (тип Ctenophora), а также у свободноплавающих личинок очень многих групп животных: плоских и кольчатых червей, моллюсков, членистоногих, полухордовых, иглокожих и др. Эту гипотетическую стадию филогенеза древних Metazoa можно назвать «стомофагоцителлой» (подчеркивая эпителизацию лишь ротового отдела фагоцитобласта).
Возможно, на этой стадии филогенеза произошла первая крупная дивергенция филогенетического ствола древних многоклеточных, связанная с тем, что некоторые группы этих животных перешли к освоению морского дна, другие же продолжали совершенствовать приспособления к активной жизни в толще воды.
Современные низшие плоские черви — бескишечные турбеллярии (Acoela) в целом сохранили тот уровень организации, который, вероятно, был характерен для древнейших многоклеточных, впервые перешедших к освоению подвижного образа жизни на дне водоемов. От вендских представителей этих турбеллярий могли возникнуть филогенетические стволы, ведущие к другим группам плоских червей, к нитчатым червям и к предкам кольчатых червей (протоаннелидам). От протоаннелид обособились, с одной стороны, предки моллюсков, с другой — предки членистоногих. У всех этих групп произошла дальнейшая дифференциация фагоцитобласта. У низших червей эпителизировалась лишь его центральная часть, что привело у плоских червей к формированию разветвленного кишечника с единым отверстием — «ртом», ведущим во внешнюю среду, а у нитчатых червей — к образованию сквозного кишечника с ротовым и анальным отверстиями. У высших групп (кольчатые черви, моллюски и членистоногие) эпителизировался весь фагоцитобласт: не только его центральная часть (энтодермальный кишечник), но и периферическая (мезодерма и ее производные). Последнее привело к развитию вторичной полости тела — целома, стенки которой образованы мезодермальным целомическим эпителием. Более примитивные представители кольчатых червей, моллюсков и членистоногих обладают характерной личиночной стадией — трохофорой. В связи с этим указанные группы иногда объединяют под названием Trochozoa.
У тех потомков стомофагоцителлы, которые продолжали совершенствовать адаптации к жизни в толще воды, также произошла эпителизация центрального и отчасти периферического фагоцитобласта: возникла гастральная полость (первичный кишечник) и ее периферические ветви (гастроваскулярные каналы). К этому уровню организации среди современных животных ближе всего стоят гребневики, вероятно сохранившие примитивный образ жизни в толще воды. От их позднепротерозойских предков, которых можно назвать «проктенофорами», с переходом к прикрепленной жизни на морском дне возникли стрекающие кишечнополостные (тип Coelenterata, или Cnidaria).
Другие филогенетические линии, ответвившиеся от проктенофор, также осваивали морское дно, но с развитием приспособлений к активному передвижению по субстрату, подобно тур-белляриям и их потомкам, но на другом исходном уровне организации. У этих форм в результате завершения эпителизации периферического фагоцитобласта также образовалась вторичная полость тела — целом, но возникла она совершенно другим способом, чем у Trochozoa. В онтогенезе животных, происходящих от проктенофор, вторичная полость тела обособляется от первичного кишечника, как его боковые карманообразные выпячивания (первоначально было, вероятно, три пары таких выпячиваний), которые затем отшнуровываются от стенок кишки (рис. 33). Такой способ развития целома получил название энтероцельного — в отличие от схизоцельного способа, характерного для Trochozoa, у которых целом возникает в результате появления полостей внутри скоплений мезодермальных клеток, без всякой связи с первичным кишечником. О. и Р. Гертвиги и И.И.Мечников обосновали гипотезу, согласно которой энтероцельный целом возник в эволюции из гастроваскулярных каналов проктенофорных предков (энтероцельная теория происхождения целома). Энтероцельный целом характерен для типов погонофор (Pogonophora), щетинкочелюстных (Chaeto-gnatha), плеченогих (Brachiopoda), мшанок (Bryozoa) и ряда других, в том числе группы так называемых вторичноротых животных (Deuterostomia), объединяющей типы хордовых (Chordata), иглокожих (Echinodermata) и полухордовых (Hemichordata). У вторичноротых животных имеется много общего, в частности особое положение дефинитивного (присущего взрослым организмам) рта, возникающего на полюсе тела, противоположном первичному эмбриональному рту — бластопору. На месте же последнего развивается анальное отверстие. Вторичноротые, несомненно, имеют общее происхождение; в качестве их предков указывают гипотетическую группу олигомерных червей, тело которых было разделено на три отдела, имелся вторичный рот и энтероцельный целом. Среди современных вторичноротых к уровню организации олигомерных червей ближе всего стоят свободноживущие полухордовые, представителем которых является желудевый червь (Balanoglossus).
Особое положение среди многоклеточных животных занимают губки (тип Porifera, или Spongia). Эта группа характеризуется очень примитивным общим уровнем организации: губки, по существу, не имеют эпителизованного фагоцитобласта, упорядоченного внутреннего строения, настоящего кишечника, нервной системы, рецепторов и т. д. Губки отличаются от всех остальньк Metazoa чрезвычайно своеобразным онтогенезом, в ходе которого происходит инверсия зародышевых листков (экто- и энтодерма, так сказать, меняются местами). Новейшие данные молекулярных исследований показали, что губки имеют общее происхождение со всеми многоклеточными. Вероятно, они представляют собой очень раннюю боковую ветвь, обособившуюся на уровне фагопителлы. Древнейшие ископаемые остатки губок известны из вендских (эдиа-карских) отложений в Австралии.
«Взрывная эволюция» в начале кембрия
Граница между протерозойской и палеозойской эрами отмечается резким изменением в составе и богатстве ископаемой фауны. После в основном «немых» толщ верхнего протерозоя, среди которых рассеяны относительно редкие местонахождения эдиакарской фауны, в осадочных породах кембрия (первого периода палеозойской эры), начиная с самых нижних горизонтов, внезапно возникает огромное разнообразие и обилие остатков ископаемых организмов. Среди них помимо низших многоклеточных — губок и кишечнополостных — встречаются также представители высокоразвитых типов животных — плеченогих, моллюсков, членистоногих и др. К концу кембрия появляются почти все известные типы многоклеточных животных. Этот взрыв формообразования на границе протерозоя и палеозоя — одно из самых загадочных событий в истории жизни на Земле. Благодаря этому начало кембрийского периода является столь заметной вехой, что нередко все предшествующее время в геологической истории, т. е. весь криптозой, именуют «докембрием».
Находки эдиакарской фауны и другие данные по докембрийс-ким организмам говорят о том, что эволюция многоклеточных животных началась задолго до рубежа нижнего кембрия и привела к формированию разнообразных групп. Есть основания считать, что в позднем протерозое уже сложились многие типы Metazoa. Крайняя редкость захоронений ископаемых представителей этих групп в отложениях позднего протерозоя, может быть, объясняется отсутствием у большинства докембрийских животных твердого скелета. В раннем кембрии такой скелет появился у самых разных групп животных. При этом скелетные ткани и анатомия скелета были совершенно различны у разных групп: от гибких членистых хитиновых панцирей членистоногих до монолитных известковых раковин моллюсков и плеченогих. Было высказано предположение, что причиной появления большого количества ископаемых остатков организмов в раннекембрийских отложениях было изменение гидрохимического режима водоемов, благоприятствующее скелетообразованию по чисто химическим причинам, в частности, указывают на усиленное отложение фосфоритов в морских осадках раннего кембрия. Но такое предположение не увязывается с указанным разнообразием форм и химического состава скелета у кембрийских животных. Как могло благоприятствовать повышение содержания фосфатов в воде образованию, например, кремниевой раковины, или хитина, представляющего собой комплекс азотсодержащих полисахаридов? Таким образом, едва ли правильно пытаться свести «нижнекембрийскую революцию» только к скелетизации организмов. Замечательная ископаемая фауна, включающая разнообразных животных, как наделенных скелетом, так и «мягкотелых», была обнаружена в начале 1980-х гг. в среднекембрийских сланцах Бёрджес в Британской Колумбии в Канаде. В состав этой фауны входит около 120 родов, среди которых представители губок, кишечнополостных, кольчатых червей-полихет, моллюсков, членистоногих, иглокожих, полухордовых, хордовых, плеченогих и других групп, в том числе загадочных организмов неизвестной таксономической принадлежности. Среди них выделяются крупные хищники Anomalocaris, достигавшие 2 м длины и обладавшие странным обликом: удлиненное обтекаемое тело, большие стебельчатые глаза, пара членистых околоротовых придатков, служивших, вероятно, для захвата добычи; челюстной аппарат из множества подвижных пластинок, брюшной плавник, расчлененный на ряд последовательных лопастей. В 1994 г. остатки ископаемой фауны, близкой по составу к фауне Бёрджес, были обнаружены в нижнекембрийских отложениях Южного Китая.
Для объяснения резких изменений состава и общего облика фауны и флоры в некоторые моменты истории Земли, в том числе на рубеже протерозоя и палеозоя, некоторые ученые (в частности, О. Шиндевольф) пытаются привлечь «взрыв мутаций», вызванный какими-то катастрофическими изменениями внешних условий. Подавляющее большинство мутаций снижают жизнеспособность мутантных организмов — этим пытаются объяснить массовое вымирание видов прежней фауны и флоры. В то же время общее усиление мутационного процесса, по мнению Шинде-вольфа, приводит к возникновению и быстрому распространению новых форм. При этом сразу возникают новые типы организации — скачкообразно, посредством крупных мутаций. Возможную причину такого «мутационного взрыва» О. Шиндевольф видел в повышении уровня жесткой космической радиации в результате вспышки Сверхновой звезды на достаточно близком расстоянии от Солнца.
К сожалению, эта концепция не может объяснить ни одного конкретного случая изменений фауны и флоры. Почему вымерли одни группы организмов и преуспели другие, прежде сосуществовавшие с первыми? В сущности, гипотеза «мутационного взрыва» просто подменяет анализ конкретных ситуаций постулированном универсальной причины для объяснения любого крупномасштабного эволюционного изменения. Как мы уже неоднократно подчеркивали, основой эволюционного процесса являются малые мутации, и филогенетические преобразования большого масштаба складываются из них под контролем естественного отбора. Крупные же мутации обычно детальны. Наконец, расчеты показали, что вспышки Сверхновых звезд не могут вызвать такого повышения радиации на поверхности Земли, которое имело бы предполагавшийся О.Шиндевольфом мутагенный эффект.
Вообще всегда предпочтительнее искать объяснения событиям, происходящим на Земле, не прибегая к таким гипотезам, которые постулируют универсальное влияние каких-то космических факторов, никак не опосредованное конкретными земными условиями.
В этом отношении от других концепций выгодно отличается гипотеза, выдвинутая в 60-е гг. Л.Беркнером и Л.Маршаллом, объясняющая многие важнейшие события в ходе докембрийской и послекембрийской эволюции, а также на рубеже криптозоя и фанерозоя, опираясь на закономерные изменения условий в среде обитания древних организмов. Эта гипотеза связывает развитие жизни на Земле с изменениями содержания кислорода в земной атмосфере.
В современной атмосфере Земли содержится около 21 % кислорода (это соответствует его парциальному давлению 159 мм ртутного столба). Свободный кислород атмосферы необходим подавляющему большинству современных организмов как окислитель в процессах дыхания. Водные организмы обычно дышат кислородом, растворенным в воде, но этот последний образует с атмосферным кислородом единую систему: избыток кислорода, выделяющегося в воде в результате фотосинтеза водных растений, поступает в атмосферу, а кислород атмосферы растворяется в поверхностном слое воды, по тем или другим причинам обедненной растворенным кислородом.
Однако кислородная атмосфера, столь богатая этим элементом, среди всех планет Солнечной системы присуща только Земле. Это не случайно: высокая химическая активность кислорода приводит к тому, что в условиях планет кислород в свободном состоянии долго существовать не может: участвуя в различных химических реакциях, он оказывается связанным в виде окислов и других соединений. Обилие кислорода в атмосфере современной Земли — результат фотосинтеза, осуществляемого в течение 3 млрд лет зелеными растениями. В процессах фотосинтеза из углекислого газа и воды с использованием энергии солнечного света синтезируются органические вещества (первичная биопродукция) и выделяется свободный кислород.
СО2 + Н2O + энергия солнечного света ———> С(Н2О) + О2 + 502 кДж/моль
Первичная атмосфера Земли, существовавшая во времена зарождения жизни, 3,5-4 млрд лет назад, имела восстановительный характер и состояла, вероятно, из водорода, азота, паров воды, углекислого газа, аммиака, метана, аргона и небольших количеств других газов, в том числе и кислорода. Количество свободного кислорода в первичной атмосфере не могло превышать 0,001 от современного его содержания. Это небольшое количество кислорода выделялось в результате фотодиссоциации воды ультрафиолетовыми лучами; кислород быстро входил в различные химические реакции и вновь оказывался в химически связанном состоянии.
Зарождение жизни произошло в бескислородной среде, и кислород из-за своей высокой окислительной способности первоначально был ядовит для протоорганизмов, у которых отсутствовали соответствующие защитные биохимические системы. Вероятно, протоорганизмы по способу питания являлись гетеротрофами, использовавшими в пищу различные органические соединения абиогенного происхождения, которыми, по мнению большинства ученых, бьши обогащены водоемы раннего археозоя (состояние «первичного бульона», по А.И.Опарину) и на базе которых и возникла сама жизнь. Для освобождения энергии, необходимой в жизненных процессах, первоначально использовалась анаэробная диссимиляция (брожение):
С6Н12О6———> 2СН3СН2СН + 2СО2 + 210 кДж/моль
С появлением фотосинтеза (первыми фотосинтезирующими организмами были синезеленые водоросли) в атмосферу стал выделяться кислород.
В условиях бескислородной атмосферы распространение жизни было гораздо более ограниченным, чем ныне. Дело в том, что организмы не имеют эффективных механизмов защиты от гибельной жесткой ультрафиолетовой части излучения Солнца (с длиной волны менее 250 нм). В современной атмосфере жесткая ультрафиолетовая радиация поглощается озоновым экраном — слоем озона (О3), образующегося на высоте около 50 км из кислорода (О2) под воздействием солнечного излучения и распределяющегося в основном в 15—60 км от земной поверхности. Озоновый экран надежно защищает живые организмы, которые могут существовать как в водоемах, так и на поверхности суши и в нижних слоях атмосферы. В бескислородной атмосфере раннего протерозоя озоновый экран отсутствовал, и жизнь могла развиваться только под защитой слоя воды толщиной около 10 м. Получающие наибольшие количества энергии солнечного излучения поверхностные слои воды были недоступны для организмов. Естественно, что совершенно безжизненны были и материки.
Однако фотосинтез, осуществлявшийся в океане планеты сине-зелеными, а позднее и различными группами эукариотических водорослей, в течение 2 млрд лет медленно, но неуклонно повышал содержание свободного кислорода в атмосфере. Когда содержание кислорода достигло 0,01 от современного (так называемая точка Пастера, соответствующая парциальному давлению кислорода 1,59 мм ртутного столба), у организмов впервые появилась возможность использовать для удовлетворения своих энергетических потребностей аэробную диссимиляцию. Другими словами, после достижения точки Пастера стало возможно дыхание, которое почти в 14 раз энергетически эффективнее, чем брожение:
С6Н12О6 + 6О2 ——> 6СО2 + 6Н2O + 2,87 мДж/моль — по сравнению с 210 кДж/моль, освобождающимися при брожении. Это был важнейший переломный момент в развитии жизни.
Среди современных организмов так называемые факультативные аэробы, каковыми являются многие бактерии и некоторые дрожжевые грибы, при уменьшении содержания кислорода ниже точки Пастера используют брожение, при повышении его содержания выше этой точки — дыхание (эффект Пастера).
Переход к аэробной диссимиляции в эволюции древних организмов произошел, разумеется, не сразу — для этого необходимо развитие соответствующих ферментативных систем, — но виды, приобретшие способность к дыханию, получили огромный энергетический выигрыш и в результате возможность резко интенсифицировать метаболизм и все жизненные процессы (как выяснилось, ферментная система клеточного дыхания возникла путем небольшой модификации ферментной системы фотосинтеза - см. обзор по происхождению эукариот; и впрямь, ведь эти два процесса основаны на почти одной и той же последовательности хим. реакций, только идущей в противоположные стороны; при этом надо учитывать, что практически все биохимические реакции обратимы. Это замечательный пример "смены функций" на молекулярном уровне, показывающий к тому же, что даже крупнейшие эволюционные новообразования могут возникать путем небольших модификаций чего-то уже имеющегося в организме - А.М.). Это явилось предпосылкой к дальнейшей прогрессивной эволюции и, вероятно, способствовало ускорению эволюционных преобразований.
Но достижение пастеровской точки в развитии атмосферы Земли ознаменовалось не только появлением возможности аэробной диссимиляции. При содержании кислорода в атмосфере в количестве 0,01 от современного формируется озоновый экран, который может защитить от жесткой ультрафиолетовой радиации уже и верхние слои воды в водоемах (требуется «помощь» лишь примерно 1 м воды). Это, во-первых, позволяет организмам освоить верхние слои водоемов, наиболее богатые солнечной энергией; в результате резко усиливается эффективность фотосинтеза, увеличивается биопродукция и выделение свободного кислорода. Во-вторых, чрезвычайно расширяется арена жизни: условия в водоемах значительно разнообразнее на малых глубинах, чем на больших. Освоение этого разнообразия условий в богатой энергией среде обитания неминуемо должно было привести к резкому повышению разнообразия форм жизни, к подлинному взрыву формообразования.
По расчетам Беркнера и Маршалла, точка Пастера в эволюции атмосферы Земли была пройдена примерно 620 млн лет назад; по мнению некоторых других ученых, возможно, значительно раньше—в промежутке 700-1000 млн лет назад. Но, во всяком случае, точка Пастера была пройдена в позднем протерозое, незадолго (в геологическом смысле слова) до рубежа нижнего кембрия. В этом Беркнер и Маршалл видят ключ к решению загадки ниж-некембрийского взрыва формообразования в эволюции организмов, который последовал за достижением точки Пастера в атмосфере и логически вытекает из последствий этого события (интенсификация метаболизма, освоение множества новых разнообразных местообитаний, усиление фотосинтеза, возрастание биопродукции, убыстрение эволюции).
После достижения содержания кислорода в атмосфере, равного 0,1 от современного, озоновый экран уже в состоянии полностью защитить организмы от действия жесткой ультрафиолетовой радиации. С этого момента организмы могут начать освоение суши как среды обитания. По расчетам Беркнера и Маршалла, это должно было произойти в конце ордовика (около 420 млн лет назад)(По мнению ряда других ученых, содержание кислорода в атмосфере, соответствующее 10% от современного, было достигнуто уже к началу кембрия (примерно 580 млн лет назад)). Действительно, примерно к этому времени относится появление первых наземных организмов (см. гл. 2). Современное содержание кислорода в атмосфере было достигнуто в конце пермского периода.