Транспорт газов кровью. Возрастные особенности системы кровообращения
Поступивший в организм через легкие кислород должен быть доставлен к его потребителям — всем клеткам тела, находящимся иногда на расстоянии десятков сантиметров (а у некоторых крупных животных — нескольких метров) от «источника». Процессы диффузии не способны транспортировать вещество на такие расстояния с достаточной для потребностей клеточного метаболизма скоростью. Наиболее рациональным способом транспортировки жидкостей и газов является использование трубопроводов. Человек в своей хозяйственной деятельности давно и широко использует трубопроводы везде, где требуется постоянное перемещение значительных количеств воды, нефти, природного газа и многих других веществ. Для того чтобы противостоять силе гравитации, а также преодолеть силу трения в трубах, по которым течет жидкость, человек изобрел насос. А чтобы жидкость текла только в нужном направлении, не возвращаясь обратно в момент снижения напора в трубопроводе, были изобретены клапаны — устройства, похожие на двери, открывающиеся только в одну сторону.
Совершенно так же устроена и главная транспортная система человеческого организма — система кровообращения. Она состоит из труб-сосудов, насоса-сердца и многочисленных клапанов, которые обеспечивают однонаправленность движения крови через сердце и не допускают обратного тока крови в венах. Разветвляясь на мельчайшие трубочки — капилляры, кровеносные сосуды доходят практически до каждой клетки, снабжая их питательными веществами и кислородом и забирая продукты их жизнедеятельности, которые нужны другим клеткам или от которых организму необходимо избавиться. Система кровообращения у млекопитающих и человека представляет собой замкнутую сеть сосудов, через которую проходит единый ток крови, обеспечиваемый циклическим сокращением сердечной мышцы. Поскольку задача кислородного обеспечения клеток стоит первой в ряду жизненно важных задач, система кровообращения высших животных и человека специально приспособлена к наиболее эффективному газообмену в воздушной среде. Это обеспечивается разделением замкнутого сосудистого трубопровода на два изолированных круга — малый и большой, первый из которых обеспечивает газообмен между кровью и окружающей средой, а второй — между кровью и клетками тела.
Малый и большой круги кровообращения. Артериями называются те сосуды, которые несут кровь от сердца к органам и тканям. Они имеют прочную и довольно толстую стенку, которая должна выдерживать большие давления, создаваемые работой сердца. Постепенно разветвляясь на все более мелкие сосуды — артериолы и капилляры — артерии приносят кровь ко всем тканям. Выносящие кровь из тканей сосуды называются венами. Они формируются по мере слияния и укрупнения более мелких сосудов — капилляров и венул. Вены не отличаются мощностью своих стенок и легко спадаются, если в них нет крови, поскольку им не приходится сталкиваться с большим кровяным давлением. Чтобы ток крови не мог идти в обратном направлении, в венах имеются специальные клапаны, задерживающие кровь, если что-то заставляет ее двигаться в обратном направлении. Благодаря такой конструкции вены, протекающие через скелетные мышцы, работают в качестве дополнительных насосов: сокращаясь, мышцы выталкивают из вен кровь, а расслабляясь, позволяют новой порции крови войти в вены. Поскольку движение крови в них может быть только в одном направлении — к сердцу — такой «мышечный насос» вносит значительный вклад в кровообращение при мышечной нагрузке.
Малый круг кровообращения начинается от правого желудочка, из которого выходит легочная артерия. Практически сразу она делится на два потока — к правому и левому легкому. Достигнув легких, легочные артерии разделяются на множество капилляров, тончайшие из которых омывают отдельные легочные пузырьки (альвеолы). Именно здесь происходит обмен газами между кровью и воздухом, находящимся в альвеолах. Для облегчения газообмена легочные капилляры состоят всего из одного слоя клеток.
В отличие от всех других артерий организма, легочные артерии несут в себе бедную кислородом и насыщенную углекислым газом кровь. Такая кровь называется «венозной», поскольку она течет в венах всего тела (за исключением легочных вен). Эта кровь уже прошла по сосудам большого круга кровообращения, отдала содержавшийся в ней кислород и собрала углекислоту, от которой нужно избавиться в легких.
Выходящие из легких вены, напротив, несут «артериальную», т. е. насыщенную кислородом и практически свободную от углекислого газа кровь. Таким образом, малый круг кровообращения принципиально отличается от большого круга направлением движения насыщенной кислородом крови.
Легочные вены несут обогащенную кислородом кровь в левое предсердие. Наполнившись кровью, предсердие сокращается, проталкивая эту порцию крови в левый желудочек. Оттуда и начинается большой круг кровообращения.
Из левого желудочка выходит самый крупный в организме кровеносный сосуд — аорта. Это довольно короткая, но очень мощная трубка, способная выдерживать весьма большие перепады давлений, возникающие в процессе периодических сокращений сердца. Еще в грудной клетке аорта делится на несколько крупнейших артерий, одни из которых несут богатую кислородом артериальную кровь к голове и органам верхней части тела, а другие — к органам нижней части тела. От крупных магистральных сосудов последовательно отделяются все новые более мелкие сосуды, несущие кровь к отдельным участкам тела. Таким образом, как к головному мозгу, так и к другим важнейшим органам всегда поступает свежая, насыщенная кислородом кровь.
Единственным исключением из этого правила является печень, в которой артериальная и венозная кровь смешиваются. Однако это имеет глубокий физиологический смысл. С одной стороны, печень получает свежую артериальную кровь по печеночной артерии, т.е. ее клетки полностью обеспечиваются необходимым количеством кислорода. С другой стороны, в печень входит так называемая воротная вена, которая несет с собой питательные вещества, всосавшиеся в кишечнике. Вся кровь, оттекающая от кишечника, проходит через печень — главный орган защиты от разного рода токсинов и опасных веществ, которые могли всосаться в пищеварительном тракте. Мощные окислительные системы печени «сжигают» все подозрительные молекулы, превращая их в неопасные продукты метаболизма.
От всех органов кровь собирается в вены, которые, сливаясь, образуют все более крупные объединенные сосуды. Нижняя полая вена, собирающая кровь из нижней части тела, и верхняя полая вена, в которую стекается кровь из верхней части тела, впадают в правое предсердие, а оттуда выталкиваются в правый желудочек. С этого момента кровь вновь попадает в малый круг кровообращения.
Лимфатическая система. Второй транспортной системой организма является сеть лимфатических сосудов. Лимфа практически не участвует в транспорте кислорода, но имеет большое значение для распределения по организму питательных веществ (особенно — липидов), а также для защиты организма от проникновения чужеродных тел и опасных микроорганизмов. Лимфатические сосуды по своему устройству похожи на вены, они также имеют внутри себя клапаны, обеспечивающие однонаправленный ток жидкости, но, кроме того, стенки лимфатических сосудов способны к самостоятельному сокращению («лимфатические сердца»). Не имея центрального насоса, лимфатическая система обеспечивает перемещение жидкости благодаря этим лимфатическим сердцам и сокращению скелетных мышц. На пути лимфатических сосудов, особенно в местах их слияния, образуются лимфатические узлы, выполняющие главным образом защитные (иммунные) функции. Отрицательное давление, создающееся в грудной полости при вдохе, также работает в качестве силы, толкающей лимфу по направлению к грудной клетке, где лимфатические протоки впадают в вены. Таким образом, лимфатическая система объединяется с системой кровообращения в единую транспортную сеть организма.
Сердце и его возрастные особенности. Главный насос кровеносной системы — сердце — представляет собой мышечный мешок, разделенный на 4 камеры: два предсердия и два желудочка. Левое предсердие соединено с левым желудочком отверстием, в створе которого располагается митральный клапан. Правое предсердие соединено с правым желудочком отверстием, которое закрывает трехстворчатый клапан. Правая и левая половины сердца между собой не соединены, поэтому в правой половине сердца всегда находится «венозная», т.е. бедная кислородом кровь, а в левой — «артериальная», насыщенная кислородом. Выход из правого (легочная артерия) и левого (аорта) желудочков закрыт сходными по конструкции полулунными клапанами. Они не позволяют крови из этих крупных выходящих сосудов возвращаться в сердце в период его расслабления.
Формирование сердечно-сосудистой системы у плода начинается очень рано — уже на 3-й неделе после зачатия появляется группа клеток, обладающих периодической сократительной активностью, из которых впоследствии формируется сердечная мышца. Однако даже к моменту рождения некоторые особенности эмбрионального кровообращения сохраняются. Поскольку источником кислорода и питательных веществ в эмбриональном периоде являются не легкие и пищеварительный тракт, а плацента, соединенная с организмом плода через пуповину, строгого разделения сердца на две независимые половины не требуется. Кроме того, легочный кровоток еще не имеет функционального смысла, и этот участок не должен быть включен в магистральное кровообращение. Поэтому у плода имеется овальное отверстие, соединяющее между собой оба предсердия, а также специальный артериальный проток, соединяющий аорту и легочную артерию. Вскоре после рождения эти шунтирующие протоки закрываются, и два круга кровообращения начинают функционировать, как у взрослых.
Хотя основную массу стенок сердца составляет мышечный слой (миокард), там имеется несколько дополнительных слоев тканей, защищающих сердце от внешних воздействий и укрепляющих его стенки, которые испытывают огромное давление во время работы. Эти защитные слои называются перикард. Внутренняя поверхность полости сердца выстлана эндокардом, свойства которого позволяют не вредить клеткам крови во время сокращений. Расположено сердце с левой стороны грудной клетки (хотя в отдельных случаях бывает и иное его расположение) «верхушкой» вниз.
Масса сердца у взрослого человека составляет 0,5 % от массы тела, т. е. 250—300 г у мужчин и около 200 г у женщин. У детей относительные размеры сердца немного больше — примерно 0,7 % от массы тела. Сердце в целом увеличивается пропорционально увеличению размеров тела. За первые 8 мес. после рождения масса сердца возрастает вдвое, к 3 годам — втрое, к 5 годам — в 4 раза, а к 16 годам — в 11 раз по сравнению с массой сердца новорожденного. У мальчиков сердце обычно несколько больше, чем у девочек; лишь в период полового созревания начавшие созревать раньше девочки имеют более крупное сердце.
Миокард предсердий значительно тоньше, чем миокард желудочков. Это и понятно: работа предсердий состоит в нагнетании порции крови сквозь клапаны в расположенный по соседству желудочек, тогда как желудочкам надо придать крови такое ускорение, которое заставит ее добраться до самых удаленных от сердца участков капиллярной сети. По этой же причине миокард левого желудочка в 2,5 раза толще, чем миокард правого желудочка: проталкивание крови по малому кругу кровообращения требует гораздо меньших усилий, чем по большому кругу.
Мышца сердца состоит из волокон, подобных волокнам скелетной мускулатуры. Однако наряду со структурами, обладающими сократительной активностью, в сердце представлена также другая — проводящая — структура, которая обеспечивает быстрое проведение возбуждения ко всем участкам миокарда и его синхронное периодическое сокращение. Каждый участок сердца в принципе способен к самостоятельной (спонтанной) периодической сократительной активности, однако в норме сердечным сокращением управляет определенная часть клеток, которая называется водителем ритма, или пейсмейкером, и расположена в верхней части правого предсердия (синусный узел). Автоматически вырабатываемый здесь импульс с частотой примерно 1 раз в секунду (у взрослых; у детей — значительно чаще) распространяется по проводящей системе сердца, которая включает предсердно-желудочковый узел, пучок Гисса, распадающийся на правую и левую ножки, разветвляющиеся в массе миокарда желудочков. Большинство нарушений ритма сердца являются следствием тех или иных поражений волокон проводящей системы. Инфаркт (омертвение части мышечных волокон) миокарда наиболее опасен в тех случаях, когда поражаются сразу обе ножки пучка Гисса.
Сердечный цикл. Возбуждение, автоматически возникающее в синусном узле, передается на сократительные волокна предсердий, и мышцы предсердия сокращаются. Эта стадия сердечного цикла называется систолой предсердий. Она длится примерно 0,1 с. За это время порция крови, скопившейся в предсердиях, перемещается в желудочки. Сразу вслед за этим происходит систола желудочков, которая длится 0,3 с. В процессе сокращения мышц желудочков, из них под большим давлением выталкивается кровь, направляющаяся в аорту и легочные артерии. Затем наступает период расслабления (диастола), который длится 0,4 с. В это время кровь, поступившая по венам, входит в полость расслабленных предсердий.
Довольно значительная механическая работа сердца сопровождается механическими и акустическими эффектами. Так, если приложить ладонь руки к левой стороне груди, можно ощутить периодические удары, которые совершает сердце при каждом своем сокращении. Пульс (регулярные волнообразные колебания стенок крупных сосудов с частотой, равной частоте сокращений сердца) можно прощупать также на сонной артерии, на лучевой артерии руки и в других точках. Если приложить ухо или специальную трубочку для прослушивания (стетоскоп) к груди или спине, можно услышать тоны сердца, возникающие на последовательных этапах его сокращения и имеющие свои характерные особенности. Тоны сердца у детей не такие, как у взрослых, что хорошо известно врачам-педиатрам. Прослушивание сердца и прощупывание пульса — старейшие диагностические приемы, с помощью которых врачи еще в средние века определяли состояние пациента и в зависимости от наблюдаемых симптомов назначали лечение. В тибетской медицине длительное (десятки минут) непрерывное наблюдение за пульсом до сих пор служит основным диагностическим приемом. В современной медицине широко используются методы эхокардиографии (запись ультразвуковых волн, отраженных от тканей работающего сердца), фонокардиографии (запись звуковых волн, образуемых сердцем в процессе сокращений), а также спектральный анализ сердечного ритма (специальный прием математической обработки кардиограммы). Исследование вариабельности сердечного ритма у детей применяется, в частности, для оценки их адаптивных возможностей при учебной и физической нагрузке.
Электрокардиограмма. Поскольку сердце представляет собой мышцу, его работа приводит к появлению биологических электрических потенциалов, всегда сопровождающих сокращение мышц любого типа. Будучи достаточно сильными, эти сокращения вызывают мощные потоки электрических импульсов, распространяющиеся по всему телу. Напряжение тока при таких сокращениях составляет около 1 тысячной доли вольта, т.е. величину, вполне достаточную для регистрации с помощью специального потенциометра. Прибор, предназначенный для регистрации электрической активности сердца, называется электрокардиографом, а записываемая им кривая — электрокардиограммой (ЭКГ). Снять потенциал для записи ЭКГ с помощью проводящих ток электродов (металлических пластин) можно с разных участков тела. В медицинской практике чаще всего используются отведения ЭКГ от двух рук либо от одной руки и одной ноги (симметрично либо асимметрично), а также ряд отведений с поверхности груди. Вне зависимости от места отведения, ЭКГ всегда имеет одни и те же зубцы, чередующиеся в одинаковой последовательности. Места отведения ЭКГ влияют только на высоту (амплитуду) этих зубцов.
Зубцы ЭКГ принято обозначать латинскими буквами Р, Q, R, S и Т. Каждый из зубцов несет информацию об электрических, а следовательно, метаболических процессах в различных участках миокарда, на разных этапах сердечного цикла. В частности, зубец Р отражает систолу предсердий, комплекс QRS характеризует систолу желудочков, а зубец Т свидетельствует о протекании восстановительных процессов в миокарде во время диастолы.
Регистрация ЭКГ возможна даже у плодов, поскольку электрический импульс сердца плода легко распространяется по токопроводящим тканям его и материнского организма. Никаких принципиальных отличий в ЭКГ детей нет: те же зубцы, та же их последовательность, тот же физиологический смысл. Различия заключены в амплитудных характеристиках зубцов и некоторых соотношениях между фазами работы сердца и отражают, главным образом, возрастное увеличение размеров сердца и повышение с возрастом роли парасимпатического отдела вегетативной нервной системы в управлении сократительной активностью миокарда.
Скорость кровотока. При каждом сокращении желудочки изгоняют всю находящуюся в них кровь. Этот объем жидкости, которая выталкивается сердцем во время систолы, называется ударным выбросом, или ударным (систолическим) объемом. Этот показатель увеличивается с возрастом пропорционально увеличению размеров сердца. Годовалые дети имеют сердце, выбрасывающее чуть больше 10 мл крови за одно сокращение, у детей от 5 до 16 лет эта величина возрастает с 25 до 62 мл. Произведение величин ударного выброса и частоты пульса показывает количество крови, проходящей через сердце за 1 мин, и называется минутным объемом крови (МОК). У годовалых детей МОК составляет 1,2 л/мин, к школьному возрасту увеличивается до 2,6 л/мин, а у юношей и взрослых достигает 4 л/мин и более.
При разнообразных нагрузках, когда потребность в кислороде и питательных веществах возрастает, МОК может весьма значительно увеличиваться, причем у детей младшего возраста главным образом за счет увеличения частоты пульса, а у подростков и взрослых также и за счет увеличения ударного выброса, который при нагрузке может повышаться в 2 раза. У тренированных людей сердце имеет обычно большие размеры, часто — неадекватно увеличенный левый желудочек (так называемое «спортивное сердце»), и ударный выброс у таких спортсменов может даже в покое в 2,5—3 раза превышать показатели нетренированного человека. Величина МОК у спортсменов также бывает в 2,5—3 раза выше, особенно при нагрузках, требующих предельного напряжения окислительных систем в мышцах и соответственно транспортных систем организма. При этом у тренированных людей физическая нагрузка вызывает меньшее учащение сердечных сокращений, чем у нетренированных. Это обстоятельство используется для оценки уровня тренированности и «физической работоспособности при пульсе 170 уд/мин».
Объемная скорость кровотока (т.е. количество крови, проходящее через сердце за минуту) может быть мало связана с линейной скоростью продвижения крови и входящих в ее состав клеток по сосудам. Дело в том, что линейная скорость зависит не только от объема переносимой жидкости, но и от просвета трубы, по которой эта жидкость течет. Чем дальше от сердца, тем суммарный просвет сосудов артерий, артериол и капилляров становится все больше, поскольку при каждом очередном разветвлении суммарный диаметр сосудов увеличивается. Поэтому самая большая линейная скорость движения крови наблюдается в самом толстом кровеносном сосуде — аорте. Здесь кровь течет со скоростью 0,5 м/с. Доходя до капилляров, суммарный просвет которых примерно в 1000 раз больше площади сечения аорты, кровь течет уже с мизерной скоростью — всего 0,5 мм/с. Такой медленный ток крови через расположенные глубоко в тканях капилляры обеспечивает достаточное время для полноценного обмена газами и другими веществами между кровью и окружающими тканями. Скорость кровотока, как правило, адекватна интенсивности обменных процессов. Это обеспечивается гомеостатическими механизмами регуляции кровотока. Так, в случае избыточного снабжения тканей кислородом, капилляры сужаются, повышая периферическое сопротивление и соответственно уменьшая скорость протекания по ним крови. Напротив, если кислорода к ткани притекает мало, то в ней образуются кислые продукты обмена, и смещение рН в кислую сторону расслабляюще действует на мышцы стенок кровеносных сосудов. Их тонус снижается, сопротивление потоку крови уменьшается, и скорость кровотока возрастает. Сходным образом регулируется ток крови через участки кожи в зависимости от текущих потребностей организма: необходимости отдать избыточное тепло или удержать тепло внутри. В первом случае кожные сосуды расширяются, и кровь получает доступ в поверхностные слои кожи; во втором случае — сужаются, кожа бледнеет, что означает ограничение доставки крови в наружные слои.
Частота пульса и артериальное давление крови. Для характеристики работы сердечно-сосудистой системы чаще всего используются показатели пульса и артериального давления. У новорожденных детей частота пульса значительно выше, чем у взрослых. Даже в условиях спокойного сна она составляет в первые месяцы жизни 130—140 уд/мин, снижаясь к концу 1 года жизни до 120 уд/мин. У детей дошкольного возраста нормальная величина пульса составляет 95 уд/мин, у младших школьников — 85—90 уд/мин. К подростковому возрасту показатель пульса снижается до 80 уд/мин, а у юношей становится таким же, как у взрослых, — 72—75 уд/мин. У мужчин частота пульса обычно несколько ниже, чем у женщин. При каждом ударе пульса новая порция крови выталкивается в кровеносное русло. Сокращение желудочков сердца создает давление, которое волнообразно распространяется по крупным кровеносным сосудам, постепенно угасая на уровне артериол и капилляров, суммарный просвет которых во много раз больше. Эта разница давлений является той силой, которая заставляет кровь продвигаться от сердца и магистральных сосудов к капиллярам. Стенки кровеносных сосудов — это не пассивные оболочки, сквозь которые протекает жидкость, толкаемая насосом. В стенках артерий и некоторых капилляров имеются кольцеобразные гладкие мышцы, которые управляют тонусом сосудов. Чем выше сосудистый тонус, тем сильнее зажаты артерии, тем большее сопротивление току крови они оказывают, тем выше артериальное давление крови. Артериальное давление необходимо для того, чтобы кровь доставлялась к головному мозгу, расположенному у человека намного выше уровня сердца. Сердцу необходимо своей сократительной силой преодолеть вес столба крови, равного расстоянию от выхода аорты до макушки. Ясно, что эта величина зависит от роста человека. У взрослого это расстояние намного больше, чем у ребенка, поэтому артериальное давление у детей существенно ниже, чем у взрослых.
Еще одна физиологическая причина, по которой артериальное давление должно быть достаточно высоким, — конструкция почки: для того чтобы произошла фильтрация первичной мочи, кровь должна входить в почку под большим давлением. Вот почему в большинстве случаев повышенное давление крови наблюдается у людей, страдающих нарушениями работы почек либо тонуса сосудов головного мозга.
Для измерения кровяного давления используют простой прибор, состоящий из манжеты, манометра и фонендоскопа. Манжету накладывают на плечо и нагнетают в нее воздух под контролем манометра. Манжета пережимает сосуды, проходящие вдоль плечевой кости. Когда ток крови в этих сосудах полностью прекратился, клапан манжеты потихоньку открывают и с помощью фонендоскопа на внутренней поверхности локтевого сгиба слушают характерные тоны, которые появляются только в тот момент, когда давление крови, создаваемое сердцем в момент систолы, становится достаточным (максимальным), чтобы протолкнуть кровь через полупережатую манжетой артерию. Величина показания манометра в момент появления первого тона называется систолическим давлением. По мере дальнейшего снижения давления в манжете, тоны отчетливо слышны в фонендоскоп, однако в определенный момент раздается последний тон, и больше ничего услышать не удается. Этот момент соответствует минимальному давлению, которое имеется в артериях в момент диастолы, почему и называется диастолическим. Показания манометра в этот момент также регистрируются. Разница между систолическим и диастолическим давлением называется пульсовым давлением и косвенно характеризует величину ударного выброса.