Свойства различных нервных волокон теплокровных

      Длитель­ Длитель­ Длитель­ность следовой -  
Тип Диаметр Скорость ность пика ность Функция
волокон волокна, мкм проведе­ния, м/с потенциала действия, мс следовой деполяри­зации, мс гнперпо- ляризации, мс
А а 12-22 ■ 70—120 0,4—0,5 15-20 40—60 Моторные волокна скелет­ных мышц, афферентные волокна от мышечных ре­цепторов
А р 8—12 40—70 0,4-0,6     Афферентные волокна от ре­цепторов прикосновении
AY 4-8 15—40 0,5—0.7     Афферентные волокна от ре­цепторов прикосновения и давления, эфферентные волокна к мышечным ве­ретенам
А 6 1—4 5-у-15 0,6—1,0     Афферентные волокна от не­которых рецепторов тепла, давления, боли
в 1 - 3.5 3—18 1-2 Отсутст­вует 100 -300 Преганглионарные вегетати­вные волокна
С 0.5—2,0 0.5—3 2,0 50-80 300—1000 П остга н г л нон а рн ые вегстя -
            тивные волокна, афферен­
          / / тные волокна от некоторых
          рецепторов тепла, давле­ния, болн


исследование скорости проведения возбуждения по нервным волокнам у человека

Скорость проведения возбуждения по нервным волокнам может быть определена у человека сравнительно несложным путем. Для определения скорости проведения по двигательным волокнам ^пользуется электрическая стимуляция нерва через кожу в тех местах, где он расположен неглу- юко. Используя электромиографическую методику, записывают электрический ответ мышцы на >то раздражение. Латентный период ответа в основном зависит от скорости проведения по нерву. Измерив его, а также расстояние между стимулирующими и отводящими электродами, можно >ассчитать скорость проведения. Более точно ее можно определить по разности латентного ответа 1ри раздражении нерва в двух точках. Для определения скорости проведения по чувствительным юлокнам наносят кожное электрическое раздражение, а ответ отводится от нерва.

В связи с тем что высокая скорость проведения по нервным волокнам обусловлена миелиновой >болочкой, нарушения ее, наблюдающиеся при ряде заболеваний нервной системы, сопровождаются ;нижением скорости проведения возбуждения. Поэтому методика определения скорости проведения ю нервным волокнам широко используется в неврологических клиниках для диагностических 1,елей.

химические изменения в нерве в покое и при проведении возбуждения

Нерв в состоянии покоя потребляет' кислород и выделяет углекислоту. Если один часток нерва поместить в атмосферу азота, а другой оставить в воздухе, то уже [ерез несколько минут можно обнаружить, что поверхность нерва, лишенная кислорода, [риобретает электроотрицательный заряд. Объясняется это тем, что в бескислородной реде вследствие изменения обменных процессов нарушается работа натрий-калиевого [асоса, в результате чего происходит прогрессирующая деполяризация мембраны нерв- [ых волокон. Примерно через Г/2 ч потенциал покоя падает настолько, что проведе­те нервных импульсов на этом участке нерва полностью прекращается. При возвра- цении нерва в атмосферу кислорода потенциал покоя быстро восстанавливается и даже [а некоторое время становится больше исходной величины. Одновременно восстанавли- (ается и проведение возбуждения.

Возбуждение нерва сопровождается повышением потребления кислорода, при­ем по мере увеличения частоты раздражения поглощение кислорода возрастает рис. 50). Вместе с тем отмечаются увеличение распада богатых энергией фосфорных оединений — аденозиктрифосфата и креатинфосфата и повышенное образование юлочной кислоты (за счет анаэробного расщепления глюкозы и гликогена).

При возбуждении усиливается также бел- эвый обмен в нервных волокнах, о чем свиде- зльствует, в частности, выделение значительных эличеств аммиака. Предполагают, что аммиак бразуется в результате расщепления 1утамина. Интенсивное раздражение нерва ызывает, кроме того, усиление обмена нуклеи- овых кислот и фосфолипидов.

При раздражении большинства мякотных грвных волокон из них высвобождается аце- шхолин, из безмякотных симпатических нерв- ых волокон — норадреналин.

Наличие ацетилхолина в одних нервных элокнах и норадреналина в других свидетель- гвует о химической-гетерогенности разных типов ервных волокон.

В нервных окончаниях ацетилхолин и нор- феналин являются химическими передатчи- ами нервного импульса — медиаторами.

Свойства различных нервных волокон теплокровных - student2.ru Частота стимуляции Рис. 50. Повышение потребления кислоро­да нервом в зависимости от частоты сти­муляции.

73

Синтезируемые в соме нервных клеток медиаторы диффундируют вдоль этих волокон к нервным окончаниям, из которых они и" выделяются при возбуждении.

ТЕПЛОПРОДУКЦИЯ НЕРВА

О динамике обмена веществ нерва в покое и при возбуждении можно судить по его теплопро­дукции, которую впервые удалось зарегистрировать Хиллу в 1926 г. при помощи специально сконструированных высокочувствительных термоэлементов.

Теплообразование седалищного нерва лягушки, измеренное в покое, составляет 4,14* 10"3 кал на 1 г нерва в минуту при 20 ° С. Теплообразование безмякотного нерва краба несколько выше: 1 • 10"2 кал на 1 г в минуту при 20 °С. Это согласуется с данными о значительно большем потреблении кислорода безмякотными нервами в покое. Если поместить нерв в атмосферу азота, теплообразова­ние покоя резко снижается.

При раздражении нерва теплообразование значительно возрастает. Так же как и в мышце, тепло выделяется в две фазы, которые обозначаются как начальное и запаздывающее тепло­образование.

Новейшие исследования, проведенные при помощи высокочувствительной и малоинерционной аппаратуры, показали, что начальное теплообразование непосредственно связано с процессом генерации потенциала действия. Так установлено, что подъем потенциала действия сопровожда­ется выделением небольшой порции тепла, а окончание пика — его поглощением. Запаздывающее теплообразование после ритмического раздражения нерва продолжается десятки минут.

УТОМЛЕНИЕ НЕРВА

Впервые Н. Е. Введенский установил, что нерв в атмосфере воздуха сохраняет способность к проведению возбуждений даже при многочасовом (около 8 ч) непрерыв­ном раздражении. Это свидетельствует о том, что нерв в атмосфере воздуха практически не утомляем или малоутомляем.

Относительная неутомляемость нерва отчасти зависит от того, что он тратит при своем возбуждении сравнительно мало энергии. Так, 1 г нерва лягушки выделяет при максимальном раздражении только на 20—100 % больше тепла, чем в покое. Такой прирост очень незначителен по сравнению с наблюдаемым при возбуждении мышцы. Благодаря этому процессы ресинтеза в нерве в состоянии покрывать его относительно малые расходы энергии при возбуждении даже в том случае, если оно длится много часов.

Энергетические траты при возбуждении нервных волокон связаны главным образом с работой натрий-калиевого насоса, который активируется поступлением внутрь цито­плазмы Na+. В условиях нормального кровоснабжения нерва натрий-калиевый насос обеспечивает устойчивое поддержание ионного состава цитоплазмы, так как число ионов Na+, поступающих внутрь волокна, и К+, покидающих волокно при каждом импульсе, очень мало по сравнению с общим их содержанием в цитоплазме и межкле­точной жидкости. Если принять, что число ионов, пересекающих единицу площади мембраны, в различных волокнах одинаково, то в этом случае изменение концентрации этих ионов в цитоплазме должне быть обратно пропорционально диаметру волокна. Поэтому волокно диаметром 0,5 мкм при каждом импульсе должно терять 'Аооосодер­жания К+ вместо '/]оооооо, как это наблюдается в гигантских аксонах кальмара. Этим, по-видимому, и объясняется тот факт, что тонкие нервные волокна утомляются значительно быстрее, чем толстые.

Наши рекомендации