Физико-химические свойства крови. В первые дни жизни удельный вес крови больше (1060—1080 г/л), чем у взрослых (1050—1060 г/л), но потом достигает этих значений. Вяз-


кость крови у новорожденного выше вязкости воды в 10—15 раз, а у взрослого — в 5 раз; снижение вязкости до уровня взрослых происходит к 1 мес. Для новорожденного характер­но наличие метаболического ацидоза (рН 7,13— 6,23 ). Однако уже на 3—5-е сутки рИ достигает значений взрослого человека (рН = 7,35—7,40). Однако на протяжении всего детства снижено количество буферных оснований, т.е. имеет место компенсированный аци­доз. Содержание белков крови у новорожденного достигает 51—56 г/л, что значительно ниже, чем у взрослого (70—80 г/л), в 1 год — 65 г/л. Уровень «взрослого» состояния на­блюдается в 3 года (70 г/л). Соотношение отдельных фракций, подобно «взрослому» состо­янию, наблюдается с 2—3-летнего возраста (у новорожденных относительно высока доля у-глобулинов, попавших к ним от матери).

СИСТЕМА КРОВООБРАЩЕНИЯ

Кровообращение плод». С 20 —21-го дня внутриутробного развития у эмбриона начина­ет функционировать желточное кровообращение, при котором сердце изгоняет кровь в жел­точные сосуды. С момента образования плаценты, т.е. с 8—9-й недели, и до рождения плода функционирует плацентарное кровообращение. При этом сердце плода в своем строении по сравнению с сердцем ребенка после его рождения имеет следующие отличия — нали­чие овального отверстия в перегородке между правым и левым предсердиями и наличие боталлова протока, соединяющего между собой легочный ствол с нисходящей ветвью аорты. Посредством овального отверстия и боталлова протока происходит переход крови из правой половины сердца в левую в условиях функционирующего у плода малого круга кровообращения. Сосудистые русла плода и матери контактируют между собой через пла­центу, где происходит обмен газами, питательными веществами и конечными продуктами метаболизма плода. От плаценты к плоду идет пупочная вена, несущая в себе артериаль­ную кровь, а от плода к плаценте венозная кровь притекает по двум пупочным артериям. Эти сосуды объединяются в пупочном канатике, тянущемся от пупочного отверстия плода к плаценте. Пупочная вена при подходе к печени плода разделяется на две ветви - одна из них впадает в воротную вену, по которой артериальная кровь направляется в печень. Прой­дя через печень, теперь уже венозная кровь, вливается в нижнюю полую вену. Вторая ветвь пупочной вены - венозный (аранцев) проток — вливается в нижнюю полую вену непосред­ственно. Таким образом, на уровне нижней полой вены у плода происходит первое смеши­вание артериальной крови, идущей от плаценты, с венозной кровью, идущей от нижних конечностей и туловища плода.

После первого смешивания кровь (артериально-венозная) по нижней полой вене посту­пает в правое предсердие, где она могла быть смешана с чисто венозной кровью, поступаю­щей в правое предсердие по верхней полой вене. Однако, большая часть крови из нижней полой вены проходит через овальное отверстие из правого предсердия в левое и далее на­правляется по обычному пути большого круга кровообращения — в левый желудочек и аорту. По восходящей ветви и дуге аорты кровь поступает в сосуды головы, сердца и верх­них конечностей. Таким образом, головной мозг плода и верхняя часть тела получают кровь практически после ее первого смешивания с венозной кровью. Не прошедшая через оваль­ное отверстие кровь нижней полой вены в правом предсердии и правом желудочке пол­ностью смешивается с венозной кровью из верхней полой вены — это второе смешивание крови. Из правого желудочка кровь после второго смешивания поступает в легочный ствол, из которого по боталлову протоку поступает в нисходящую часть аорты, где и происходит третье смешивание крови. По нисходящей ветви аорты кровь доставляется к мышцам и органам туловища и к нижним конечностям.

Таким образом, в результате данного распределения крови у плода его печень получает чистую артериальную кровь, головной мозг, голова, шея, сердце и верхние конечности — практически кровь после первого смешивания, туловище и нижние конечности — кровь после ее третьего смешивания.

30. Физиология человека

Пройдя по сосудам большого круга кровообращения через мышечные структуры и че­рез органы тела, венозная кровь по пупочным артериям подходит к плаценте, где и проис­ходит обмен дыхательными газами, питательными субстратами и продуктами обмена меж­ду кровью плода и матери. В конце беременности частота сердечных сокращений плода достигает 120—140 уд/мин, минутный объем кровотока — 750 мл, причем 65% объема предназначено для плацентарного обмена, и лишь 35% — непосредственно для плода. В этот период преимущественно для сердца характерна адренергическая регуляция.

При рождении за счет перевязки пуповины и начала дыхания возникают следующие из­менения. Прежде всего, прекращается плацентарное кровообращение. В сосудах большого круга сопротивление возрастает в 2 раза, в связи с чем давление в левом предсердии и ле­вом желудочке также повышается. По этой причине в предсердии закрывается овальное отверстие и одновременно снижается переход крови из боталлова протока в аорту. В этот период в легочных клетках Кульчицкого в больших количествах образуют брадикинин. Вместе с повышением содержания кислорода в альвеолах это вызывает расслабление глад­ких мышц кровеносных сосудов малого круга кровообращения и снижение в нем и в правом сердце давления. Это приводит к началу функционирования малого круга кровообращения. Закрытие артериального (ботталова) протока происходит на 1—8-е сутки после рождения (за счет роста сократительной активности гладких мышц протока в ответ на повышение содержания в крови кислорода), анатомическое закрытие происходит к 5—7-му месяцу. Венозный (аранцев) проток закрывается в первые 5 минут после рождения в результате спазма гладких мышц, а зарастает к 2 месяцам после рождения: У новорожденного минутный объем кровотока достигает почти 490 мл, частота сердечных сокращений—140 уд/мин.

Морфологические изменения сердечно- сосудистой системы на ранних этапах онтогенеза-' У новорожденных предсердия по сравнению с желудочками имеют больший объем, чем у взрослых. Правый и левый желудочки примерно равны между собой. С возрастом идет на­растание массы сердца (особенно интенсивно - в первые два года жизни, а также в 12—14 и 17—20 лет). С 20—30-го дня после рождения начинает проявляться доминирование (по массе) левого желудочка над правым. До 2 лет жизни продолжается дифференцировка со­кратительных волокон миокарда, его проводящей системы и сосудов. На протяжении пер­вых 15 лет жизни происходит серия поворотов и перемещений сердца внутри грудной клетки. В частности, в грудном возрасте начинается поворот сердца справа налево вокруг вертикальной оси. В процессе онтогенеза меняются размеры и строение кровеносных сосудов. Темп роста магистральных сосудов, однако, более медленный, чем у сердца. Кровеносные сосуды но­ворожденных тонкостенные, в них недостаточно развиты мышечные и эластические во­локна; отношение просвета вен и артерий — примерно 1:1. Вены растут быстрее артерий, поэтому к 16 годам это соотношение становится равным 2:1. С ростом сосудов происхо­дит развитие в них мышечной оболочки и соединительнотканных элементов. В сосудах малого круга кровообращения, наоборот, мышечная оболочка истончается, а их просвет возрастает.

Частота сердечных сокращений (ЧСС).У новорожденного — 140 уд/мин; пульс аритми­чен. С возрастом ЧСС уменьшается, особенно быстро — в первый год жизни. У месячного ребенка ЧСС составляет 136 уд/мин, в 1 год — 120—125, в 3 года — 105—110, в 5 лет — 95—100, в 7 лет — 85—90, в 10 лет — 80—85, в 12 лет — 75—80, в 14—17 лет—70—80, у взрослых — 60—80 уд/мин. Снижение ЧСС обусловлено ростом холинергических вли­яний на сердце. Повышенная двигательная активность, в том числе спортивные тренировки аэробной направленности, способствуют более быстрому возрастному снижению ЧСС. Мак­симальное повышение ЧСС в ответ на физическую нагрузку зависит от возраста и состав­ляет (220 - N) уд/мин, где N — число лет.

Систолический и минутный объем кровотока (СОК и МОК).В среднем на протяжении всего раннего онтогенеза относительная величина СОК не меняется и составляет примерно 1 мл/кг массы тела. Абсолютная величина СОК возрастает параллельно массе тела: у но-

ворожденного она составляет 2,5— 3,5 мл; в 1 год — 10—11 мл; в 3 года — 13—17 мл; в 5 лет — 16—20 мл; в 7 лет — 20—25 мл; в 10 лет — 28—36 мл; в 14 лет — 43—60 мл; в 17 лет — 50—60 мл, у взрослых — 60—70 мл. Относительная величина МОК в процессе ран­него онтогенеза снижается со 140 мл/мин на кг массы тела у новорожденного до 70 мл/мин на кг массы тела у взрослого. Абсолютная величина МОК (мл/мин) — возрастает: у ново­рожденного она составляет 490, в 1 год — 1250, в 3 года — 1700, в 5 лет — 2300, в 7 лет т— 2500, в 10 лет — 3200, в 14—17 лет — 3800—4300, а у взрослого — 4200—5000.

С возрастом повышается потенциальная возможность сердца. Так, у 7—8-летних маль­чиков при физических нагрузках СОК возрастает до 70 мл, МОК — до 13—16 л/мин, у 14—15-летних детей — до 100—120 мл и 20—24 л/мин, в то время как увзрослых — до 110—130 мл и 30—35 л/мин соответственно.

Показатели артериального давленая.С возрастом они увеличиваются. Систолическое давление (СД, мм. рт. ст.) у новорожденных достигает 60—66, в 1 год — 95, в 3 года —102, в 5 лет — 103, в 7 лет — 104, в 10 лет —106, в 14—17 лет — 110, у взрослых — 120 мм рт. ст. Ориентировочная формула величины СД для детей после года: СД = 100 + 0.5 п, где п -количество лет. Диастолическое давление (ДД, мм рт. ст.) у новорожденных достигает 36— 40 мм рт. ст., с 1 года до 10 лет оно равно 60, в 14-—17 лет — 70 и у взрослых — 80 мм. Пульсовое давление (мм рт. ст.) у новорожденных достигает 24—36, в последующие пери­оды, в том числе у взрослых, — 40—46 мм рт. ст.

У девочек все показатели АД, как правило, ниже, чем у мальчиков, в среднем на 5 мм рт. ст. У детей и подростков сумма ЧСС (уд/мин) и величины СД (мм рт. ст.) остается постоян­ной, равной 200. При физической нагрузке у взрослых обычно СД возрастает, а ДД — сни­жается; у детей в основном происходит незначительное повышение СД.

Для детей характерно непостоянство показателей АД, зависимость этих показателей от эмоционального состояния ребенка, умственного и физического утомления (при этом на­блюдается выраженный рост величины АД). В период полового созревания, когда развитие сердца происходит более интенсивно, чем сосудов, может наблюдаться так называемая юношеская гипертония, т. е. повышение СД до 130—140 мм рт. ст.

Величина центрального венозного давления у ребенка первых лет жизни достигает 105 мм вод. ст. у подростков — 86 мм вод. ст. Величина венозного давления имеет широкие индивиду­альные вариации.

Возрастные особенности регуляции кровообращения.У новорожденных дети активация вагуса приводит к урежению ЧСС; у них выражен глазосердечный рефлекс, т.е. урежение ЧСС при надавливании на глазные яблоки. В то же время адренергическая реакция сердца не выражена, например, блокада (3-адренорецепторов не изменяет работу сердца. В целом сердце новорожденного слабо реагирует на потоки импульсов от рефлексогенных зон. С возра­стом растет степень влияния на сердце холинергического и адренергического механизмов, а также коры больших полушарий, особенно удетей с повышенной двигательной активностью. Дыхательная аритмия впервые появляется в 1 год (17% детей); в 3—7 лет она наблюдается у 39%, а в 15—17лет—у 100%. Развитие иннервационного аппарата сердца завершается к 7 годам

У новорожденных детей сосуды в основном имеют симпатическую иннервацию. С воз­растом степень ее влияния на тонус сосудистых гладких мышц возрастает. Становление центров регуляции сосудистого тонуса связано с развитием локомоций. К 1 году начинают формироваться перераспределительные механизмы, например, усиление при ходьбе крово­тока в скелетных мышцах. В подростковом возрасте нарушается адекватная регуляция со­судистого тонуса, в связи с чем нередки явления юношеской гипертонии или юношеской гипотонии, нарушение периферического кровотока (появление акроцианоза, синюшности кожных покровов).

Условные сердечные и сосудистые рефлексы преимущественно начинают хорошо про­являться в 7—8 лет (например, в этот период наблюдается предстартовая реакция системы кровообращения)

Возрастные особенности реакции системы кровообращения на физическую нагрузку. В

ответ на динамическую нагрузку, например, во время игры, дети отвечают увеличением ЧСС и СД. Чем больше возраст ребенка, тем меныпе прирост ЧСС, но более выражен рост СД (т.е. более выражено повышение СОК). У тренированных детей характер ответ­ной реакции становится таким же, как у взрослых, т.е. ответ становится более экономным; у них также более высокая скорость восстановления ЧСС и АД после нагрузки, чем у нетренированных сверстников. В ответ на статическую физическую нагрузку дети, особен­но школьники, отвечают значительным повышением СД и ДД, что обусловлено генерали­зованным спазмом периферических сосудов; такая реакция может сохраняться до 5 часов. Это указывает на нежелательность длительных статических нагрузок для детей, так как они могут приводить к развитию у них гипертонического состояния.

Возрастные особенности ЭКГ и ФКГ. У новорожденных детей из-за недоразвитости ле­
вого желудочка на ЭКГ имеются признаки правограммы (R,,, > R,). Кроме того, у них высо­
кая амплитуда зубца Р (за счет относительно большого предсердия) и зубца Т. У грудных
детей электрическая ось сердца смещается влево. В среднем ЭКГ приобретает черты взрос­
лого человека в 13;—15 лет. ,

У детей за счет меньшей звукоизолирующей способности тканей ярче аускультативная картина. Поэтому у них чаще выслушивается III тон, акцентуация и расщепление II тона на легочной артерии и более богатая гамма шумов сердца. Картина ФКГ приближается к «взрос­лому» варианту после 7 лет.

Скорость распространения пульсовой волны (СРПВ). У детей грудного возраста СРПВ по сосудам эластического типа (по аорте) и по сосудам мышечного типа (по бедренной артерии) относительно одинаковы и составляют 4—5 м/с. С возрастом вследствие увеличе- -ния в сосудах эластических элементов (а следовательно, и с ростом упругости стенок сосу­дов) СРПВ повышается, особенно по сосудам мышечного типа; у взрослых она достигает 6—10 м/с (бедренная артерия) и 5—8 м/с (аорта). По мере старения организма жесткость сосудистой стенки возрастает, в связи с чем увеличивается и СРПВ. Поэтому данный пока­затель используется как один из маркеров биологического возраста человека.

ДЫХАНИЕ

Особенности системы внешнего дыхания у плода. Дыхание плода реализуется плацен­той. Однако уже с 11-й недели у плода наблюдаются сокращения диафрагмы и межребер­ных мышц. Эти движения способствуют развитию легких плода, активируют его кровооб­ращение, а также формируют ансамбль нейронов, участвующий в регуляции дыхания. Ги­поксия, гиперкапння и ацидоз увеличивают частоту дыхательных движений плода. Замеря­емые с помощью ультразвука дыхательные движения плода (как компонент его биофизиче­ского профиля) позволяют судить о функциональном состоянии плода.

Механизм первого вдоха новорожденного. Первый вдох обычно наступает через \6—70 с посл£.рождения. Он обусловлен развитием гипоксии (в процессе родов и особенно после перевязки пуповины и отслойки плаценты), ростом потока афферентной импульсации от рецепторов кожи, проприр- и вестибулорецепторов, а также устранением рефлекса «ны­ряльщика» (удаление жидкости из носовой полости), тормозящего активность центрально­го дыхательного механизма.

Морфологические особенности системы внешнего дыхания. У новорожденных детей реб­ра расположены почти поп прямым углом к позвоночнику, поэтому реберное дыхание, ко­торое преимущественно возникает при крике, у них малоэффективно, в отличие от диафраг-мального. Для новорожденных характерны низкая растяжимость ткани легкого и высокая податливость стенок грудной полости. Все это порождает низкую величину эластической тяги легкого при выдохе и объясняет более низкую величину отрицательного давления в плевральной полости, чем у взрослых (0,2—0,9 против 2,0 см вод. ст.), но более высокую -при вдохе (5,0 против 2—Зсм вод. ст.)

В процессе раннего онтогенеза в системе внешнего дыхания происходят анатомические, биофизические и физиологические изменения, меняется структура дыхательного центра. Возрастает дыхательная поверхность легких, снижается частота дыхания, возрастают дыхательный объем, жизненная емкость легких и ее составные компоненты, минутный объ­ем дыхания, потребление кислорода, а также показатели, характеризующие резервные воз­можности внешнего дыхания (максимальная вентиляция легких, максимальное потребле­ние кислорода. Ведущим фактором всех этих перемен являете* изменение потребления кислорода в условиях покоя и при физических нагрузках.

Потребление кислорода. В условиях покоя и при физической нагрузке оно зависит от интенсивности обменных процессов, а также от мощности и длительности выполняемой внешней работы. Известно, что в 1 год ребенок потребляет каждую минуту до 8 мл Ог в расчете на кг массы тела, или 80 мл СЬ в минуту, в 5 лет — 9 мл Ог на кг массы, или 180 мл Ог в минуту, в 7 лет — 8 мл/кг/мин, или 200 мл/мин Ог, в 10 лет — 6 мл/кг/мин, или 180— 210.мл/мин, в 14—17 лет —5 мл/кг/мин, или 250—300 мл/мин, а взрослые —4,5 мл/кг/мин, или 315 мл/мин. Таким образом, в расчете на кг массы тела с возрастом потребность в кислороде снижается, а в целом она возрастает (с 80 мл/мин до 250—350 мл/мин). Такой рост обеспечивается увеличением минутного объема дыхания, которое происходит за счет повышения дыхательного объема. При выполнении работы аэробной направленности по­требность в кислороде возрастает эквивалентно росту мощности работы. Поэтому макси­мальное потребление кислорода (МПК) интегрально отражает резервные возможности кислородтранслортирующей системы, в том числе системы внешнего дыхания. В расчете на кг массы тела МПК с возрастом не меняется и находится у нетренированных людей на уровне 40—50 мл/мин; абсолютные значения МПК в 7 лет составляют 1,0, в 10 лет — 1,4, в 14 лет — 2,4, а у взрослых — 2,8 л/мин. Для удовлетворения такой потребности макси­мальная вентиляция легких (МВЛ) должна быть равной соответственно 40,48, 70 и 150 л воздуха в 1 минуту.

Частота дыхания (ЧД), дыхательный объем (ДО) я минутный объем дыхания (МОД).Новорожденный совершав? 30—70 дыханий в 1 минуту, дети в ' год — 30—35, в 3 года — 25—30, в 5 лет — 20—25, в 7 лет — 23—24, в 10 лет — 20, в 14—17 лет — 18, взрослые— 12—18 дыханий в 1 минуту. Дыхательный объем у новорожденного составляет 15—20 мл воздуха, в 1год — 60, в 3 года — 95,в 5 лет— 140, в 7лет—160,в Шлет — 210,в 14—17 лет — 260—300, у взрослых—400—500 мл воздуха. Минутный объем дыхания у новорож­денного — 600—700 мл воздуха /мин, в 1 год — 2200—2700, в 3 года — 2900—3100, в 5лет — 3200—3500, в 7 лет — 3700—3900, в Юлет — 4300-^500, в 14—17 лет — 5000—5200, у взрослых — до 6000 мл/мин.

Жизненная емкость легких (ЖЕЛ). Ее удается замерить с 4 лет. В этом возрасте она составляет 1100мл, в 5лет— 1200,в 7лет— 1200—1400,в Юлет— 1400—1800,в 14— 17 лет — 2500—2700 (девушки), 2700—3900 (юноши), у взрослых — 4000—5000 мл.

Мощность форсированного вдоха и выдоха (показателя пневмотахометрии). В 7 лет эти показатели достигают соответственно 1,4 и 1,8 л/с; в 10 лет — 1,7 и 2,5 л/с; в 14 лет — 2,9 и 3,7 л/с.

Особенности регуляции дыхания у детей. У новорожденных дыхательная периоднкоде^ регулярна, серии частых, дыханий чередуются с более редкими; примерно 1 раз в 1—2 ми­нуты возникают гдубокие вдохи. Возможны внезапные остановки дыхания, что объясняет­ся низкой чувствительностью нейронов дыхательного центра к гиперкапнии. Однако у но­ворожденных есть одно важное приспособление — очень высокая устойчивость к гипоксии. Это позволяет им выдерживать длительные апноэ. Важную роль в регуляции дыхания ново­рожденных играет рефлекс Геринга—Брейера. Во время грудного вскармливания частота дыхания соответствует частоте сосательных движений: центр сосания навязывает инспира-торным нейронам свой ритм возбуждения. С возрастом совершенствуется деятельность дыхательного центра — развиваются механизмы, обеспечивающие четкую смену дыхатель-

ных фаз и формируется способность к произвольной регуляции дыхания. Такая способность появляется к началу периоду гуления, т. е. в период становления речи (2—4 мес). Д_Ц_ годамхорошо вырржрня приспотбпя<>""ЛТ'' ЦНХЯЦия к различным условиям, Чувствитель-тюстьИейронов дыхательного центра к содержанию СО2 с возрастом повышается, достигая «взрослого» состояния к 7—8 годам. В период полового созревания происходят временные нарушения регуляции дыхания: у подростка организм отличается меньшей устойчивостью к недостатку кислорода, чем у взрослого. Дети и подростки меньше, чем взрослые, способ­ны задерживать дыхание и работать в условиях недостатка кислорода. У детей ниже спо­собность преодолевать гипоксические и гиперкапнические сдвиги в крови, о чем, в частно­сти, свидетельствуют результаты пробы Штанге (задержка дыхания на вдохе). Так, в S—б лет длительность задержки дыхания достигает 16 с, в 7 лет — 28 с, в 10 лет — 40—50 с, в 14—17 лет — 80—90 с.

Особенности внешнего дыхания у юных спортсменов. По сравнению со сверстниками у юных спортсменов, как правило, выше ЖЕЛ, МПК, МВЛ, мощность форсированного вдо­ха и выдоха (т. е. показатели тахометрии), выше устойчивость к гипоксии и гиперкапнии (т.е. показатели функциональных дыхательных проб, например, пробы Штанге), снижена потребность в кислороде в условиях покоя и при физической нагрузке, т. е. у них работа совершается более экономно.

V Особенности транспорта О, ■ СО2. У новорожденных повышено содержание гемоглоби­на и высок уровень фетального гемоглобина (HbF) — все это повышает кислородсвязываю-щую способность крови и тем самым его адаптационные возможности. Активность карбоан-гидразы у новорожденных составляет 30% от активности взрослых; однако к концу 1-го года жизни эти различия исчезают.

ЭНДОКРИННАЯ СИСТЕМА

Общие закономерности. Эндокринные железы начинают функционировать во внутриут-робшжлериоде. Однако их развитие происходит гетерохронно; при этом гипоталамо-ги-пофизарный уонтт^22^_уст!>"яи"мия<*тна после^пТих этапах внутриутробного развития. Гормоны И биологически активные вещества влияют на рост и развитие эмбриона и плода. Уже зигота продуцирует ацетилхолин, катехоламиныг серотонин, которые необходимы для ее дробления; эстрадиол и прогестерон нужны для превращения морулы в бластоцисту. / Гормоны плаценты, а также гормоны плода важны для правильного развития его органов и ^систем. Например, глюкокортикоиды необходимы для развития легких, тимуса, кроветвор­ных органов, андрогены—для половой дифференцировки. В постнатальном периоде эндо­кринная система играет исключительно важную роль в росте и развитии организма. Так, гормоны щитовидной железы (Тз и Т<), гипофиза (гормона роста), поджелудочной железы (инсулин), а также половые гормоны способствуют росту костей, развитию мышечной сис­темы, мозга, половых органов; до начала полового развития ведущая роль принадлежит гормону роста, Тз, Т4, инсулину, а затем — половым гормонам. Комплекс гормонов (мела-тонин, серотонин, тиреоидные гормоны, гонадолиберин, ФСГ, ЛГ, ПРЛ, андрогены и эстро­гены) определяет начало и темпы полового созревания. Следует отметить, что в период , /грудного вскармливания с материн'''"1" "»"»»•»" ряб?чтк пплуча»т многие гормоны, в том числе щголактин, играющий важную роль в становлении репродуктивной функции и в раз­витии мозга.

Гипофиз. Он продуцирует многие гормоны уже внутриутробно. У новорожденного его масса достигает 100—150 мг, у взрослого — 500—600 мг. Наибольший прирост шесы гипофиза наблюдается в период полового созведания. У новорожденныхТормоньГгипо-физа (ТТГ, АКТГ, ГР) играют Исключительно важную роль, так как способствуют адап­тации организма и его иммунной устойчивости. Роль других гормонов (ФСГ, ЛГ, ПРЛ, АДГ, окситоцина) существенно возрастает на более поздних этапах онтогенеза. Важней-

шим гормоном гипофиза являетсягормон роста. Плод в больших количествах продуци­рует этот гормон: на 20—32-й йедТ концентрация гормона роста в крови в 100 раз выше, чем у взрослых. После рождения его содержание в крови постепенно снижается и дости­гает «нормы» взрослого человека к 3—5 голам. Недостаточная продукция гормона рос­та приводит к развитию гипофизарной кщэликовосхи» которая отчетливо наблюдается после 2 лет.

Гормоны щитовидной железы. В онтогенезе щитовидная железа появляется одной из
первых: уже на 12-й нед. она синтезирует йодсодержашие гормоны и повышает их продук­
цию в ответ на выброс ТТГ. У нпяпрпжпенш^х е.е МЯР.СЯ составляет 1—5 г, а максимальная
масса Q4— 1 s г) няйтцрдяется в 15—16 лет. В постнатальном периоде продукциятрийодти-
ронина (Тз) и тироксина (Т.») прогрессивно возрастает, что обеспечивает умственно^, физи- /
ческое идщловое развитие. Недостаток продукции этих гормонов (особенно, у 3—6- лет- [/
нил детей) вызывает сла&эуз<ие(кретинизм). В период полового созревания происходит
вторичный подъем активности щитовидной железы: иногда это приводит к пубертатному
гидерхиреозу, который проявляется повышенной возбудимостью ЦНС и эмоциональной
лабильностью. Снижение активности железы начинается в 21—30 лет. /

Парашитовндные железы. У новорожденных масса 4 желез достигает 5 мг, в 10 лет — ^ 40 мг, а у взрослых — 7S—85 мг. Максимальная активность желез наблюдается в пери­натальный период ив первые 7 лет, особенно, в первые два. Недостаточная продукция паратгодмоца вызывает разрушение зубов, выпадение волос, похудение и тетанию мышц детей, а избыточная — повышенное окостенение, образование камней в почках, отло­жение солей кальция в стенках сосудов.

Гормоны коры надпочечников. Кора надпочечников развивается внутриутробно, перед родами она продуцирует все стероидные гормоны и реагирует повышением их продукции в ответ на АКТГ Масса надпочечников у новорожденных составляет 7 г, а у взрослого — 10— 16 г. Рост железы происходит до 30 лет. С самых первых дней жизни глюкокортикоиды принимают участие в реализации стресс-реакций. Наибольшая продукция этих гормонов отмечается в 1—3 года, а также в пубертатном периоде. После 30 лет способность секретиро-вать глюкокортикоиды снижается.

Катехоламнны. Они начинают синтезироваться с 16-й нед. внутриутробного развития (преимущественно, норадреналин). Благодаря катехоламинам регулируется процесс гли-когенолиза у плода, что особенно важно в момент родов. К моменту рождения, однако, мозговой слой надпочечников, синтезирующий катехоламины, развит в меньшей степени, чем корковый. Основной рост мозгового слоя наблюдается в 3—8 лет, а также в пубертат­ном периоде. По мере роста организма участие и значение катехоламинов в процессах его адаптации возрастает.

Поджелудочная железа. У плода она начинает функционировать рано: с 8-й нед. секрети-рует глюкагон, а с 12-й нед. — инсулин. Однако функция инсулина в период внутриутроб­ного развития не связана с регуляцией входа глюкозы в клетки: под его влиянием возраста­ет транспорт аминокислот через плаценту. У новорожденных масса поджелудочной желе­зы составляет 3 г; «взрослый» вес (72—76 г) наблюдается в 13—14 лет. До 6 месяцев про­дукция инсулина высокая, затем она снижается и до 2-летнего возраста она ниже, чем у взрослых (уровень инсулина в крови в пределах 6 ЕД; у взрослых — 8—9 ЕД). Недостаток продукции инсулина, приводящий к сахарному диабету, — относительно частое явление среди детей (5—10%), что объясняется чрезмерным употреблением ими углеводов. Обыч­но диабет проявляется в 6—12-летнем возрасте, а провоцирующим моментом являются корь, свинка, ветряная оспа и другие детские инфекции. Избыток инсулина вызывает у де­тей гипогликемию, порождает чувство голода, слабость и головокружение.

Вилочковая железа. У новорожденных ее масса составляет 10—14 г, в 11—15 лет — 37—38 г, в последующие годы наблюдается выраженная инволюция: в 20 лет — 21 г, в 25 лет — 18 г, в 40 лет — 15 г, в 75 лет — 5 г. Предполагают, что тимус как главный орган

иммуногенеза, помимо продукции иммуномодулирующих гормонов (тимозина и др), про­дуцирует гормональный фактор, тормозящий половое развитие, о чем свидетельствует воз­растная динамика массы тимуса. С другой стороны, считается, что половые гормоны, осо­бенно, эстрогены, вызывают атрофию тимуса.

Эпифиз.У новорожденных его масса — 7 мг, у взрослого — 200 мг. Полагают, что про­дуцируемый эпифизом мелатонин подавляет секрецию гонадолиберина, ФСГ и ЛГ, т.е тор­мозит половое созревание. В пубертатном периоде действительно концентрация этого гор­мона снижается с 220 нг/мл до 16 нг/мл, а его экскреция с мочой возрастает. Снижение гормонопродуцирующей функции эпифиза уже наблюдается в 4—7 лет. Недостаточность продукции мелатонина приводит к преждевременному половому созреванию.

Половые железы.Половые железы развиваются из единого зачатка. Дифференцировка в мужскую половую железу (яичко, тестис) или в женскую (яичник) происходит на ранних этапах внутриутробного развития (7—8 нед.).

Мужские половые железы. Уже на 11—17-й нед. у плодов мужского пола уровень андро-генов (тестостерона, дегидроэпиандростерона) достигает значений, характерных для взрос­лых мужчин (13 нмоль/л). Благодаря этому происходит развитие полового члена, мошон­ки, семявыносящих канатиков, а также дифференцировка нейронов гипоталамуса по муж­скому типу. Масса яичка новорожденного — 0,3 г; в 1 год — 1 г; в 19 лет — 20 г. После рождения гормонопродуцнрующая активность яичка до начала пубертатного периода заторможена. С 12—13 лет она постепенно возрастает (под влиянием гонадолибернина, ФСГ и ЛГ) и к 16—17 годам достигает уровня взрослых. Такой подъем активности вызыва­ет пубертатный скачок роста, появление вторичных половых признаков (оволосение лоб­ка, подмышечной впадины, лица, изменение тембра голоса, рост щитовидного хряща), а также рост полового члена, яичек, а после 15 лет — активирует сперматогенез. Возраст угасания гормональной функции яичка (мужского климакса) — весьма индивидуален, но в среднем он приходится на 60—70 лет.

Яичники.После дифференцировки из полового зачатка у плодов женского пола в яични­ке с 20-й недели происходит образование примордиальных фолликулов. В конце внутриут­робного развития часть фолликулов продуцирует в небольших количествах эстрогены, но они не влияют на формирование половых органов девочки. К моменту рождения масса яични­ка составляет 5—6 г, у взрослой женщины — 6—8 г, в постменопаузальном периоде — 2 г. На постнатальном отрезке онтогенеза выделяют три периода активности яичника: нейтраль­ный (от рождения до 6—7 лет), препубертатный (от 8 лет до первой менструации) и пубер­татный (от момента первой менструации до менопаузы). На всех этапах фолликулы проду­цируют эстрогены, но в разных количествах. Низкий уровень продукции эстрогенов до 8 лет создает возможность для половой дифференцировки нейронов мозга по женскому типу. В препубертатный период продукция эстрогенов уже достаточна для индукции пубертат­ного скачка, т.е. значительного роста костей в длину (до 10 см в год против 2—5 обычно), а также для развития вторичных половых признаков (оволосение лобка, подмышечной ямки, рост молочных желез, рост тазовых костей, развитие подкожно-жирового слоя). Постепен­ный рост продукции эстрогенов приводит к менархе, а в последующем — к становлению регулярного менструального цикла, что создает возможность для зачатия и вынашивания плода.

Оценку полового развития подростка, как правило, проводят по вторичным половым признакам, а ее результаты выражают в виде формулы. Для мальчиков она может выгля­деть, например, так — Vi,Po,Li,Axi,Fi, а для девочек — Маз, Мег, Pj, Ахз. Эти аббревиатуры означают следующее.

- Развитие волос на лобке: Ро — отсутствие, Pi — единичные волосы, Рг — редкие воло­сы в центре лобка, длинные, Pj — густые; у мальчиков — прямые, у девочек — вьющиеся, по всей поверхности лобка; Р4 — густые, вьющиеся равномерно в виде треугольника; Рз — тоже + распространение на бедра и к пупку.

Физико-химические свойства крови. В первые дни жизни удельный вес крови больше (1060—1080 г/л), чем у взрослых (1050—1060 г/л), но потом достигает этих значений. Вяз- - student2.ru г

- Развитие оволосения в подмышечной ямке: Ахо — отсутствие волос, Axi — единичные
волосы, Аха — редкие волосы в центре впадины, Ахз — у девочек: густые, длинные, вьющи­
еся; у мальчиков: густые, прямые, по всей ямке, Ах« — густые, вьющиеся, по всей ямке.

- Оволосение лица у мальчиков и юношей: Fo - отсутствие оволосения, Fi - первые воло­
сы над верхней губой, ?г — жесткие волосы над верхней губой, первые волосы на подбород­
ке, F} — распространенное оволосение над верхней губой и на подбородке, начало роста
бакенбард, F4 — слияние роста волос над губой и в области подбородка, выраженный рост
бакенбард, Fs — слияние всех зон оволосения

- Изменение тембра голоса у мальчиков и юношей: Vo — детский голос, Vi — мутация
или ломка голоса, V2 — мужской тембр голоса.

- Развитие щитовидного хряща у юношей: Lo — отсутствие признаков роста, Li — начи­
нающееся выпячивание кадыка, Ьг — отчетливое выпячивание кадыка.

- Развитие молочной железы у девушек: Мао — железы не выдаются над поверхностью
грудной клетки, Mai — околососковый кружок вместе с соском образуют единый конус,
Маг — железы значительно выдаются вместе с соском и околососковым кружком и имеют
форму конуса, Маз — тело железы принимает округлую форму, соски приподнимаются над
околососковым кружком.

- Менструальная функция у девушек: Мео — отсутствие менструаций, Me 1 — 1—2 мен­
струации к моменту осмотра, Мег — нерегулярные менструации, Мез — регулярные мен­
струации.

По данным А.А. БарановаиН.А. Матвеевой (1989), для школьников Нижнего Новгоро­да характерны следующие темпы развития: у девушек первые признаки начала пубертата (Mai.Pi) — около 9 лет, средний возраст Маз —13 лет, Ахз — 15 лет, первая менструация -в 12 лет 8 мес. (колебание — 1 год); у юношей — первые признаки пубертата (VbPi) —в 10 лет, средний возраст мутации голоса — 12 лет, средний возраст Рз — 13 лет. Половая зре­лость может наступить у девочек Волго-Вятского региона в 14—15 лет, у мальчиков — в 15— 1 б лет. Близкие значения получены в отношении девушек и юношей Кировской облас­ти (Резцова Е.М., 1995; Богатырев B.C. и соавт., 1996).

ОБМЕН ВЕЩЕСТВ

Выше уже приводились данные о величинах основного и общего обмена, свидетельству­ющие о том, что потребность в энергии, поступающей с пищей, у детей с возрастом увели­чивается. В данном разделе дается представление о качественном и количественном сос­таве пищи, необходимой для нормального развития организма человека.

Наши рекомендации