Вызванные потенциалы и потенциалы, связанные с событиями
Лекция 2. Методы психофизиологического исследования
С момента появления психофизиологических исследований при проведении наиболее широко применялись и продолжают использоваться вегетативные реакции: изменения проводимости сосудистые реакции, частота сердечных сокращений, ар термальное давление и др. Однако регистрация вегетативных реакций не относится к прямым методам измерения информационных процессов мозга. Скорее всего они представляют некоторую суммарную и песпецифическую характеристику информационных процессов. Кроме того, одна и та же вегетативная реакция (например, кожно-гальванический рефлекс — КГР) может быть связана с информационными процессами самого различного содержания. Появление КГР можно наблюдать как при усилении внимания, так и при оборонительной реакции. Однако по некоторым вегетативным реакциям можно дифференцировать различные рефлексы. Так, Ф. Грэм и Р. Клифтон (Graham F., Clifton R., 1966) предложили использовать фазическую реакцию снижения ЧСС в качестве признака, отличающего ориентировочный рефлекс от оборонительного; в последнем случае ЧСС меняется в противоположном направлении, т.е. увеличивается. Ранее Е.Н. Соколов (1958) предложил различать эти рефлексы по сосудистым реакциям головы и руки. Ориентировочный рефлекс сочетается с расширением сосудов головы, тогда как оборонительный — с сужением. При этом в обоих случаях сосуды руки реагируют
сужением.
Существует несколько причин, по которым вегетативные реакции могут быть использованы только в качестве непрямого метода изучения информационных процессов:
• они слишком медленны и протекают с задержкой;
• слишком тесно связаны с изменением функционального состояния и эмоциями;
• они неспецифичны в отношении стимулов и задач.
Однако это не означает, что вегетативные показатели не обладают высокой чувствительностью. Так, во время дихотического прослушивания значимые стимулы (произнесение имени испытуемого), хотя и подаются через игнорируемый слуховой канал, т.е. не контролируемый произвольным вниманием, часто вызывают КГР.
Некоторое преимущество перед вегетативными реакциями имеет регистрация электрической активности мышц — электро-миограмма (ЭМГ), которую отличает высокая подвижность. Кроме того, по некоторым специфическим паттернам ЭМГ, зарегистрированным от мышц липа, с высокой степенью точности можно идентифицировать различные эмоциональные состояния. Регистрация движений глаз (окулограмма) находит применение в эргономике. В целях безопасности этот показатель используется для контроля за состоянием водителей, долго находящихся за рулем автомашины или локомотива.
ЭЛЕКТРОЭНЦЕФАЛОГРАФИЯ
В традиционной психофизиологии широко используется также метод регистрации электрической активности мозга — электроэнцефалограмма (ЭЭГ). Спонтанная электрическая активность мозга характеризуется специфическими ритмами определенной частоты и амплитуды и одновременно может быть записана от многих участков черепа. Это позволяет изучать пространственные специфические паттерны ЭЭГ и их корреляцию с высшими психическими функциями.
ЭЭГ отражает колебания во времени разности потенциалов между двумя электродами. Для расположения электродов используют международную схему «10-20» (Jasper H., 1958). Отведение маркируют буквой, указывающей на область мозга, от которой оно производится, — F, О, Т, Р, С (рис. 1). Выделяют следующие ритмы мозга. Альфа-ритм с частотой 8 ~13 Гц и амплитудой 5— 100 мкВ регистрируется преимущественно в затылочной и теменной областях. Бета-ритм имеет частоту 18~30 Гц и амплитуду колебаний около 2-20 мкВ. Его локализация — в прецснтральной и фронтальной коре. Гамма-колебания охватывают частоты от 30 до 120—170 Гц, а по данным некоторых авторов — до 500 Гц при их амплитуде около 2 мкВ. Их можно наблюдать в прецеитральной, фронтальной, височной, теменной и специфических зонах коры. Дельта-волны возникают в диапазоне 0,5-4,0 Гц (20-200 мкВ), зона их появления варьирует. Тета-волны имеют частоту 4—7 Гц (5-100 мкВ) и чаше наблюдаются во фронтальных зонах. В височной области можно видеть каппа-колебания на частоте 8—12 Гц (5— 40 мкВ). Фъкус лямбда-колебаний (12-14 Гц, 20-50 мкВ) приходится на вертекс. Сонные веретена имеют частоту 12—14 Гц и широкую зону распространения. Выделяют эквиваленты альфа-ритма, которые имеют ту же частоту колебаний, чго и альфа-ритм, но другую локализацию, и чувствительны к другим видам модальности. В области роландовой борозды регистрируется мю-ритм (роландичес-кий, или аркообразный), отвечающий блокадой на проприоцеп-тивныс раздражения. В височной коре находят may-ритм, который подавляется звуковыми стимулами. С развитием компьютерной техники широкое распространение получили методы спектрального и корреляционного анализа ЭЭГ (Русинов B.C. и др., 1987; Дженкинс Г., Ватте Д., 1971, 1972; Данилова Н.Н.. 1992).
ВЫЗВАННЫЕ ПОТЕНЦИАЛЫ И ПОТЕНЦИАЛЫ, СВЯЗАННЫЕ С СОБЫТИЯМИ
Сенсорные стимулы вызывают изменения в суммарной электрической активности мозга, которые выглядят как последовательность из нескольких позитивных и негативных волн, которая длится в течение 0,5-1 с после стимула. Этот ответ получил название вызванного потенциала (evoked potential). Его нелегко выделить из фоновой ЭЭГ. В 1951 г. Дж. Даусон (G. Dawson) разработал технику когерентного накопления или усреднения ответов. Использовалась процедура синхронизации ЭЭГ относительно момента предъявления стимула, который поэтому многократно повторялся. Сначала использовалась суперпозиция -- наложение нескольких реакций (участков ЭЭГ, следующих за стимулом). Обычно это выполнялось на фотопленке, что позволяло выявить наиболее устойчивые части реакции на стимул. Затем процедура суперпозиции была заменена на суммацию участков ЭЭГ и получение усредненного вызванного потенциала (average evoked potential) (Шагас Ч., 1975; Рут-ман Э.М., 1975).
Эффективность этой процедуры была наглядно продемонстрирована при выявлении звуковых стволовых вызванных потенциалов (ВГТ). Из-за их очень малой амплитуды требуется просуммировать и усреднить несколько тысяч единичных ответов. На рис. 2 представлены основные группы компонентов звукового усредненного ВП. По латентному периоду компоненты делятся на три группы: потенциалыствола мозга (с лагенцией до 10—12 мс), средне-Л латентные (до 50 мс) и длиннолатентные (более 100 мс) потенциалы. Звуковые стволовые потенциалы состоят из 7 отклонений. Волна I \ зависит от реакции волокон слухового нерва улитки. Волна II с латенцией 3,8 мс возникает в том случае, если импульсы слухового нерва достигают ствола мозга. Волна III отражает реакцию верхней Ч оливы на уровне моста, Волна IV с латенцией около 4,5 мс связана с активностью латеральных лемнисков. Волна V имеет латенцию около 5,2 мс и отражает активность нижнего двухолмия. Фазы VI— VII — распространение сигналов по таламо-кортикальной радиации, они совпадают с медленной негативностью, предшествующей корковому ответу. Ранние компоненты нечувствительны к сну. наркозу. Они вызываются звуковыми топами частотой 2000-4000 Гц. Звуки на частоте ниже 2000 Гц вызывают только волну V.
Стволовые потенциалы — высокочувствительный инструмент Для тестирования слуховой функции. Они позволяют определить сохранность слухового анализатора на периферическом и стволовом уровнях. Особенно это важно при обследовании слуха у детей, в том числе у новорожденных, когда словесные реакции не могут быть использованы. Значение этого геста возрастает в связи с тем фактом, что даже незначительная потеря слуха в раннем детстве может привести к существенной задержке развития речи. Стволовые звуковые потенциалы применяют также в клинике для выявления опухолей, определения коматозного состояния, обследования пациентов с демиелинизацией волокон. Если стволовые потенциалы полностью отсутствуют, можно говорить о смерти Среднелатентные и длиннолатентные компоненты отражают функционирование кортикального уровня слухового анализатора. Среднелатентные компоненты (Н(), П0, На, Па, Н6) регистрируются от первичной слуховой коры, имеют малую амплитуду, более лабильны, чем стволовые потенциалы, чувствительны к сну, наркозу. Максимальная их амплитуда вызывается звуковыми тонами речевого диапазона. Длиннолатентные ответы включают компонент Н, с латенцией пика в 100 мс. Потенциал характеризуется Среднелатентные и длиннолатентные компоненты отражают функционирование кортикального уровня слухового анализатора. Среднелатентные компоненты (Н(), П0, На, Па, Н6) регистрируются от первичной слуховой коры, имеют малую амплитуду, более лабильны, чем стволовые потенциалы, чувствительны к сну, наркозу. Максимальная их амплитуда вызывается звуковыми тонами речевого диапазона. Длиннолатентные ответы включают компонент Н, с латенцией пика в 100 мс. Потенциал характеризуется Чтобы сжать информацию, содержащуюся в карте с изолиниями, делают следующий шаг: рассчитывают некоторый источник тока — диполь, эквивалентный реальному источнику тока в мозге. Определяют его локализацию, ориентацию, длину. Таким диполем обычно можно объяснить до 80—90% потенциалов, зарегистрированных от поверхности черепа. Процедура определения диполя включает построение новой карты распределения потенциалов, исходя из характеристик первично рассчитанного диполя. Затем рассчитанную карту сравнивают с исходной картой потенциалов. При их различии включают процедуру итерации, которая вносит коррективы в локализацию и характеристики рассчитанного диполя. В результате расчетная карта потенциалов максимально при Чтобы сжать информацию, содержащуюся в карте с изолиниями, делают следующий шаг: рассчитывают некоторый источник тока — диполь, эквивалентный реальному источнику тока в мозге. Определяют его локализацию, ориентацию, длину. Таким диполем обычно можно объяснить до 80—90% потенциалов, зарегистрированных от поверхности черепа. Процедура определения диполя включает построение новой карты распределения потенциалов, исходя из характеристик первично рассчитанного диполя. Затем рассчитанную карту сравнивают с исходной картой потенциалов. При их различии включают процедуру итерации, которая вносит коррективы в локализацию и характеристики рассчитанного диполя. В результате расчетная карта потенциалов максимально при ближается к исходной. При расчете диполя учитывают различия распространения тока в объемном проводнике для разных типов ткани, находящейся под электродом (кожа, кости черепа, мозговые оболочки, структуры мозга).
На рис. 4 представлены результаты расчетов дипольных источников для двух компонентов ВП. Наложение данных об источниках ЭЭГ-активности на структурные томограммы мозга конкретного человека, полученные методом структурной магнитно-резонансной томографии, дает наглядное представление о распределении локусов активации по структурам мозга. Соединение двух методов: структурной магнитно-резонансной томографии и дипольной трехмерной локализации источников электрической активности мозга — позволяет получать результаты, близкие тем, которые обычно выявляются только методами функциональной томографии (см. раздел «Томографические методы исследования мозга»).
МАГНИТОЭНЦЕФАЛОГРАФИЯ
Значительные успехи в локализации источников активности мозга, достигнутые в последнее десятилетие, связаны с развитием магнитоэнцефалографии (Холодов Ю.А. и др., 1987; Naatanen R., 1992). Первые электромагнитные поля (ЭМП) нервной системы были зарегистрированы у лягушки. Они были записаны с расстояния 12 мм при возбуждении седалищного нерва. Биологические поля мозга и различных органов очень малы. Магнитное поле человеческого сердца составляет около 1 миллионной доли земного магнитного поля, а человеческого тела — в 100 раз слабее. Магнитное поле сердца человека впервые было записано в 1963 г. Первые же измерения ЭМП мозга человека были сделаны Д. Косном (Koen D.) из Массачусетского технологического института в 1968 г. Магнитным методом он зарегистрировал спонтанный альфа-ритм у здоровых испытуемых и изменение активности мозга у эпилептиков. Первые вызванные потенциалы с помощью магнитометров были получены несколько лет спустя.
Сначапа для регистрации ЭМП были использованы индукционные катушки с большим количеством витков. С увеличением их числа чувствительность системы возрастает.Число витков в первых таких катушках достигало миллиона. Однако чувствительность их оставалась невысокой и они не регистрировали постоянное ЭМП.
Создание новых магнитометров связано с открытием Б. Джо-зефсона, за которое он получил Нобелевскую премию. Работая в области криогенной технологии со сверхпроводящими материалами, он обнаружил, что между двумя сверхпроводниками, разделенными диэлектриком, возникает ток, если они находятся вблизи ЭМП. Эта система реагировала на переменные и постоянные ЭМП. На основе открытия Б. Джозефсона были созданы СКВИДы — сверхпроводниковые квантомеханические интерференционные датчики. Магнитометры, работающие на базе СКВИДа, очень дороги, их необходимо регулярно заполнять жидким гелием в качестве диэлектрика. Дальнейшее совершенствование магнитометров связано с разработкой квантовых магнитометров с оптической накачкой (МОИ). Созданы МОНы, в которых вместо жидкого гелия используются пары щелочного металла цезия. Это более дешевые системы, не требующие криогенной техники. В них световой сигнал поступает по световодам от общего источника и достигает фотодетекторов. Колебания ЭМП мозга человека модулируют сигнал на фотодетекторах. По его колебаниям судят об электромагнитных волнах мозга. Каждый магнитометр имеет множество датчиков, что позволяет получать пространственную картину распределения ЭМП. Современные магнитометры (СКВИДы и др.) обладают высокой временной и пространственной разрешающей способностью (до 1 мм и 1 мс). Магнитоэнцефалограмма (МЭГ) по сравнению с ЭЭГ обладает рядом преимуществ. Прежде всего это связано с бесконтактным методом регистрации. МЭГ не испытывает также искажений от кожи, подкожной жировой клетчатки, костей черепа, твердой мозговой оболочки, крови и др., так как магнитная проницаемость для воздуха и для тканей примерно одинакова. В МЭГ отражаются только источники активности, которые расположены тангенциально (параллельно черепу), так как МЭГ не реагирует на радиально ориентированные источники, т.е. расположенные перпендикулярно поверхности. Благодаря этим свойствам МЭГ позволяет определять локализацию только корковых диполей, тогда как в ЭЭГ суммируются сигналы от всех источников независимо от их ориентации, что затрудняет их разделение. МЭГ не требует индифферентного электрода и снимает проблему выбора места для реально неактивного отведения. Для МЭГ, так же как и для ЭЭГ, существует проблема увеличения соотношения «сигнал-шум», поэтому усреднение ответов также необходимо. Из-за различной чувствительности ЭЭГ и МЭГ к источникам активности особенно полезно комбинированное их использование.