У здорового и больного человека

/. /. Проба Штанге в исследованиях различий толерантности к транзиторной гиперкапнии и гипоксии

При выборе способа исследования различий толерантности к транзиторной гиперкапнии и гипоксии у здорового и больного человека мы остановились на пробе Штанге (Заболотских И.Б., 1993, 1994, 1995; Илюхина В.А., Заболотских И.Б., 1993).

История применения этой пробы в клинике начинается с 1913 года, когда профессор Российской Военно—медицинской академии В.А.Штанге предложил использовать в хирургической практике функциональную нагрузку в виде максимальной по длительности задержки дыхания после глубокого вдоха в качестве показателя функционального состояния кардио—респираторной системы (Штанге В.А., 1914).

По сравнению с пробой Штанге другие функциональные дыхательные пробы (например, с возвратным дыханием или дыханием различными газовыми смесями, гипервентиляционная, ортостати-ческая) имеют ряд ограничений и недостатков. Во—первых, их нежелательно проводить у тяжелобольных из—за возможной провокации серьезных нарушений со стороны дыхательной и сердечно—сосудистой систем и в связи с этим возможных трудностей в получении сравнимых результатов у разных контингентов обследованных лиц. Во—вторых, трудно определить "пороговость" этих проб.

Правильность выполнения функциональной нагрузки контролируется появлением рефлекторных сокращений диафрагмы. Попытка ее объективизации путем записи пневмограммы с передней стенки живота впервые была предпринята в 1938 году В.Г.Куневичем. В 1954 году Н.И.Тавастшерна указал на возможность объективизации пробы Штанге путем пальпаторного определения начала рефлекторных движений диафрагмы перед окончанием апноэ.

Одним из объективных электрофизиологических проявлений порогового воздействия апноэ на дыхательный центр является появление электрической активности дыхательных мышц на электромио-грамме (Филаретов А.А., 1968). СВ.Корж (1976) обнаружил, что в качестве объективизации этой функциональной нагрузки может быть использована специфическая реакция организма, проявляющаяся сразу после задержки дыхания в виде усиленной вентиляции легких за последующие 30 с, что количественно характеризует степень возбуждения дыхательного центра.




Привлекательность пробы Штанге как показателя различий толерантности к транзиторнои гиперкапнии и гипоксии состоит, прежде всего:

— в возможности простым и доступным способом определять значения произвольного порогового апноэ у здоровых и больных лиц, в том числе, в компенсированном и декомпенсированном состоянии;

— в отсутствии "побочных" эффектов;

— в возможности получения объективных сопоставимых результатов у разных контингентов обследованных лиц.

Проведенные нами исследования на больших контингентах здоровых лиц (120 человек.) и больных с длительнсгекущими заболеваниями нервной системы и хроническими, в том числе нейрогенны-ми, заболеваниями внутренних органов (более 500 человек) показали значительную вариативность значений произвольного порогового апноэ (ППА) при пробе Штанге (от 10—15 до 140 с).

На основе комплексных клинико—физиологических исследований с использованием методов вероятностного статистического анализа было дифференцировано 4 градации значений этого показателя:

I. Низкие значения ППА (менее 30 с), что в соответствии с данными литературы и результатами наших исследований характеризовало низкую толерантность к транзиторнои гиперкапнии и гипоксии;

II. Умеренно сниженные значения ППА (от 35 до 55 с), что характеризовало умеренно сниженную толерантность к транзиторнои гиперкапнии и гипоксии.

III. Высокие значения ППА (от 60 до 85—90 с), что являлось эквивадентом высокой толерантности к транзиторнои гиперкапнии и гипоксии,

IV. Чрезмерно высокие значения ППА (более 91—95 с), что характеризовало чрезмерно высокую толерантность к транзиторнои гиперкапнии и гипоксии (Заболотских И.Б., 1993; Илюхина В.А., Заболотских И.Б., 1993).

Опираясь на современные представления о механизмах реализации пробы Штанге, у здоровых лиц и больных в компенсированном и декомпенсированном состоянии были исследованы особенности системного обеспечения различий толерантности к гиперкапнии и гипоксии.

Следует отметить, что на настоящем этапе мы не рассматриваем особенности системного обеспечения пробы Штанге в зонах переходных значений ППА, так как это требует дополнительных исследований.

Ю

1.2. Современные представления о механизмах нейрорефлек— торного и гуморального^обеспечения реализации пробы Штанге

На основе обобщения экспериментальных и клинических данных разработана принципиальная схема нейрорефлекторного и гуморального обеспечения реализации пробы Штанге (рис. 1).

Как видно из предлагаемой схемы, в ответ на глубокий вдох происходит возбуждение механорецепторов легких (Франкштейн СИ., Лисин В.В., 1977; Сафонов В.А. и соавт., 1979; Лоога Р., 1988), диафрагмы (Глебовский В.Д., Павлова Н.А., 1962), внутренних и наружных межреберных мышц (Глебовский В.Д., 1963, 1965) и плевры (Мусатова Л.П., 1958).

Тормозная импульсация с этих рецепторов, возникающая при глубоком вдохе у человека (рефлекс Геринг—Брейера), ограничивает возбуждение дыхательного центра, вызываемое задержкой дыхания. С.И.Франкштейн и В.В.Лисин (1977) обнаружили, что аффе-рентация с легких, дыхательных мышц и плевры не оказывает специфического влияния на ощущение дыхательного дискомфорта при задержке дыхания. Следовательно, в развитии дыхательного дискомфорта основное значение принадлежит нейрогуморальным механизмам.

Одновременно с раздражением механорецепторов легких, плевры и дыхательных мышц возникает возбуждение барорецепторов сосудов легких, откуда посылаются импульсы в вазомоторный центр (Дворецкий Д.П., Ткаченко Б.И., 1987; Heymans С, Neil E., 1958)

C.Lau,S.F.Maroua(1969),J.C.E.Roseetal. (1983), A.J.Baertschiet al. (1990) экспериментально доказали, что возбуждение барорецепторов синокаротидной рефлексогенной зоны сопровождается увеличением секреции адреналина, инсулина, антидиуретического и глю-кокортикоидных гормонов.

Следующим после глубокого вдоха основным этапом пробы Штанге является произвольное пороговое апноэ, во время которого развиваются и нарастают изменения на уровне газового и кислотно—основного гомеостаза в виде гиперкапнии, гипоксии и ацидоза (Маршак М.Е., 1969; Бреслав И.С, 1985). При этом, ионы водорода, образующиеся из накапливающейся углекислоты, оказывают прямое (через ликвор) возбуждающее влияние на центральные хеморе-цепторы (Юматов Е.А., 1974, 1975, б; Mitchell R. el al., 1963).

Таким образом, возбуждающая импульсация от центральных хе-морецепторов на уровне дыхательного центра конкурирует с тормозной импульсацией, исходящей от механорецепторов легких, плевры и дыхательных мышц.

Наряду с центральными, происходит возбуждение и периферических хеморецепторов, основными гуморальными активаторами которых являются артериальная гипоксемия и ацидоз (Маршак М.Е., 1961; DejoursP., 1963; Lahiri S., 1977; De Sanctis G.T. et al., 1991).

у здорового и больного человека - student2.ru

Рис.1. Принципиальная схема реализации пробы Штанге.

Утолщенными линиями обозначены этапные переходы, тонкими линиями • нервные связи, пунктирными линиями - гуморальные связи, знаком θ-тормозная импульсация.

Исследования С.В.Аничкова, М.Л.Беленького (1962), E.Mills, M.W.Edwards (1968) показали, что механизм возбуждения периферических хеморецепторов принципиально не зависит от воздействующего гуморального агента и связан с возникновением энергетического дефицита в их структурах, особенно в условиях повышения симпатического тонуса M.Purves (1970) . Высокая чувствительность синокаротидных и аортальных хеморецепторов к снижению уровня р02 артериальной крови определяется низкими резервами макроэргов в сочетании с нестабильностью энергетического баланса и большим потреблением кислорода в каротидных тельцах (Leitner L.M., LiaubetM.G., 1971).

С другой стороны, хемочувствительность каротидных телец может определяться изменением в них карбоангидразной активности в условиях гиперкапнии и гипоксии, так как этот фермент обратимо катализирует реакцию образования угольной кислоты из углекислого газа и воды и таким образом регулирует соотношение между Н и НСОз~ (Kassera C.E., Jones D.R., 1993; Iturriaga R., 1993). Следовательно, совместное действие гиперкапнии и гипоксии опосредуется преимущественно периферическими хеморецепторами (Yang F., Khoo М.С., 1994), что особенно демонстративно проявляется в случае подавления рефлекса со стороны центральных хеморецепторов (Robbins P.A., 1988, Bascom D.A. etal., 1990).

Взаимодействие углубляющихся гиперкапнии и гипоксии на уровне центральной нервной системы формирует так называемый императивный стимул дыхания, т.е. невозможность дальнейшего апноэ (Бреслав И.С. и соавт., 1985).

Произвольная пороговая задержка дыхания приводит к транзи-торной гипервентиляции, выраженность которой модулируют ретикулоспинальные вазомоторные нейроны рострального вентролатерального вещества (Sun M.K., Reis D.J., 1994) и нейроны заднего гипоталамуса (Horn E.M., Waldrop T.G., 1993; Dillon G.H., Waldrop T.С, 1993). Активация периферических хеморецепторов не обязательна для этой модуляции.

Известно, что кратковременная гипоксия любого генеза сопровождается повышением легочной вентиляции, величина которой через несколько минут возвращается к исходному уровню. Сочетанное же действие гипоксии и гиперкапнии вызывает быстрое, значительное по силе и продолжительности увеличение минутного объема дыхания (Агаджанян Н.А. и соавт., 1977; Khoo M.C.K., Marmarelis V.Z., 1989; Trzebski A. etal., 1995).

Усиление вентиляторного ответа и хеморецепторной чувствительности на гиперкапнически—гипоксическос воздействие у человека может возникать вследствие снижения эндогенной допами-нергической активности (Tatsumi К. et al., 1995) и повышения бе-таг—адренергическойактивности (Yoshiike Y. etal., 1995).

1.3 Физиологические характеристики нейрорефлекториого

и гуморального обеспечения различий толерантности

к транзиторной гиперкапнии и гипоксии

В доступной литературе мы не встретили работ, посвященных комплексному изучению особенностей нейрорефлекторного и гуморального обеспечения различий длительности произвольного порогового апноэ после глубокого вдоха у здорового и больного человека. В то же время, преимущественно в экспериментальных и, в меньшей степени, в клинико—физиологических исследованиях накоплены данные о вариациях изменений показателей центральной гемодинамики и газового гомеостаза в условиях раздражения механо—, ба-ро— и хеморецепторов; а также при транзиторной гиперкапнии и гипоксии на этапах глубокого вдоха, апноэ и императивного стимула дыхания.

Нами были проведены целенаправленные исследования латент-ности и интенсивности изменений показателей центральной гемодинамики и газового гомеостаза во время пробы Штанге при условии ее адекватного выполнения (до появления пальпаторно определяемых рефлекторных сокращений диафрагмы).

При изучении особенностей нейрогуморального обеспечения различий толерантности к гиперкапнии и гипоксии в качестве основных критериев были определены:

— реактивность центральных хеморецепторов;

— реактивность периферических хеморецепторов;

— реактивность барорецепторов малого и большого кругов кровообращения;

— гемодинамические сдвиги, опосредованные уровнем реактивности барорецепторов и периферических хеморецепторов;

— состояние оксигенации периферических тканей.

1.3.1. У ровни реактивности центральных и периферических хеморецепторов

И.С.Бреслав и соавт. (1976), Г.Ш.Усенова (1984), J.R.A.Rigg et al. (1974) предлагают оценивать реактивность центральных хеморецепторов по напряжению углекислоты в артериальной крови и степени увеличения этого показателя в точке "срыва".

В наших исследованиях реактивность центральных хеморецепторов оценивали по величине прироста концентрации углекислого газа в выдыхаемой смеси (ЕхС02) в момент окончания пробы Штанге по сравнению с ее исходным уровнем.

' )тот показатель определяли у здоровых и больных лиц с разной толерантностью к транзиторной гиперкапнии и гипоксии. Обнаружена прямая зависимость между увеличением прироста альвеоляр-

ного рС02л увеличением длительности ППА у здоровых лиц (таблица 1).

Эти тенденции в редуцированном виде сохранялись и у обследованных больных. Выявленные закономерности позволили ввести понятие уровня реактивности центральных хеморецепторов и дифференцировать их у здоровых и больных лиц с разной толерантностью к транзиторной гиперкапнии и гипоксии (таблица 2).

Наиболее изученной в ходе выполнения пробы Штанге оказалась динамика чрескожно определяемого содержания оксигемоглобина (ткНвОг), отражающего глубину развивающейся во время ППА артериальной гипоксемии и интенсивность потребления кислорода (Пенкович А.А., 1960; Махновский В.П., КузютаЭ.И., 1989).

В.В.Мельниковым (1961) установлено, что после начала задержки дыхания у здоровых людей содержание ткНвОг оставалось некоторое время (от 25 до 80 с) на исходном уровне, а степень его снижения была индивидуальна и могла достигать 30%. При этом, появление непроизвольных движений диафрагмы и дыхательных мышц могло происходить уже при снижении насыщения крови кислородом всего на 1—4%. Эти закономерности оказались верными и для больных (ЛаанеЭ.Я., 1970).

На основании анализа латентного периода (ЛП) и интенсивности (И) изменений оксигемограммы во время пробы Штанге нами было дифференцировано четыре уровня реактивности периферических хеморецепторов:

I — низкий (ЛП=55—85 с; И=15—30 %), обнаруживался при чрезмерно высоких значениях длительности ППА;

II — оптимальный (ЛП=30—55 с; И=8—18 %), обнаруживался при высоких значениях длительности ППА;

III — высокий (ЛП=20—35 с; И=5—12 %), обнаруживался при умеренно сниженных значениях ППА;

IV — чрезмерно высокий (ЛП=10—20 с; И=2—4%), обнаруживался при резко сниженных значениях ППА.

По данным А.Д.Валтернис и Э.В.Аболтинь—Аболиня (1978), удлинение латентного периода изменений оксигемограммы во время апноэ свидетельствует о снижении реактивности хеморецепторов на накопление углекислоты и респираторную гипоксию.

Полученные в наших исследованиях данные позволили конкретизировать уровни реактивности центральных и периферических хеморецепторов при разной длительности произвольного порогового апноэ, что раскрывало значимость соотношения этих факторов в раскрытии физиологических основ различий толерантности к транзиторной гиперкапнии и гипоксии.

V здоровых лиц и больных с хроническими заболеваниями органов желудочно—кишечного тракта, печени, почек, поджелудочной железы и половых органов в клинически компенсированном и де-компенсированном состояниях были исследованы особенности ва-

L5

Таблица 1 Соотношения динамики прироста альвеолярного содержания углекислого газа (рдСОг) и увеличения длительности произвольного порогового апноэ (ППА) при пробе Штанге у здоровых и больных людей

Длительность ППА (с) Прирост рлСОг (мм рт.ст.)
Здоровые лица Больные
Компенсированные Декомпенси-рованные
15—30 до 5 до 5 до 3—5
35-55 до 10 до 15 до 12
60-90 до 15—17 до 15 до 12
95—ИО До 20 и более до 15

Таблица 2 Уровни реактивности центральных хеморецепторов к повышению альвеолярного рСОг при разной толерантности к гипер-капнии и гипоксии у здоровых и больных лиц

Толерантность к транзиторной ги-перкапнии и гипоксии Уровни реактивности центральных хеморецепторов
Здоровые лица Больные
Компенсированные Декомпенси-рованные
Чрезмерно высокая Низкая Умеренно снижена -
Высокая Умеренно снижена Умеренно снижена Высокая
Умеренно снижена Высокая Умеренно , снижена Высокая
Низкая Чрезмерно высокая Чрезмерно высокая Чрезмерно высокая

риаций некоторых показателей функционального состояния системы дыхания при разных уровнях реактивности центральных и периферических хеморецепторов (таблица 3).

По данным И.С. Бреслава (1985) императивный стимул дыхания, прерываюший апноэ, возникает тогда, когда раСОг достигает 43—50 мм рт.ст., а раОг падает до 75—60 мм рт.ст. Максимальная задержка дыхания, равная 131 с, наблюдалась при исходном раС02, равном 35 мм рт.ст., которое увеличивалось до 55 мм рт.ст. в точке "срыва". Минимальная толерантность к пробе Штанге — 21с — обнаружена при раС02, равном 66 мм рт.ст.; в этом случае прирост раСОг составил 3 мм рт.ст.

В нашем исследовании не было обнаружено столь жесткой зависимости длительности апноэ от величины ЕхСОг, коррелирующей с РаСОг (Бунятян и соавт., 1994). На наш взгляд, это могло быть следствием феномена метаболической "фиксации углекислоты". Известно, что избыток углекислоты в организме может утилизироваться по трем основным метаболическим путям: 1) путем карбокси-лирования органических соединений; 2) за счет восстановления углекислого газа до муравьиной кислоты; 3) путем образования карба-моилфосфата с дальнейшим его использованием для синтеза более сложных органических соединений (Гулый М.Ф., 1983; Rognstad R., 1983;KaussingerO., 1987).

Так, например, длительность пробы Штанге в пределах 10—55 с была детерминирована не только высокой реактивностью периферических хеморецепторов, но и интенсификацией аэробного метаболизма у здоровых лиц и компенсированных больных или исходно имеющейся артериальной гипоксемии у больных в декомпснсиро-ванном состоянии.

Факт ограничения длительности предельной задержки дыхания гипоксемией в условиях гипервентиляции был обнаружен в эксперименте на животных и у здоровых людей (Потапов А.В., Козырин И.П., 1991). При этом, в момент прекращения апноэ раСОг у них повышалось лишь до физиологической нормы.

Известно, что на продолжительность произвольного порогового апноэ оказывает влияние исходное состояние кислотно—основного гомеостаза. Наши результаты подтвердили хорошо установленные ранее закономерности, заключающиеся в том, что на фоне метаболического алкалоза и респираторного ацидоза время задержки дыхания оказывается относительно большим, а на фоне метаболического ацидоза и дыхательного алкалоза относительно меньшим, чем в условиях нормального состояния кислотно—основного гомеостаза (Усенова Г.Ш., 1984; Сверчкова B.C., 1985; Серебровская Т.В., 1985; Shaefer K.E. etal., 1975).

Таблица 3 Величины некоторых показателей функциональной системы дыхания при разных уровнях реактивности центральных и периферических хеморецепторов у здоровых лиц (I) и больных в компенсированном (И) и декомпенсированном (III) состоянии

Исследованные показатели Уровни реактивности:
Низкий Умеренный Высокий Чрезмерно высокий
  I | III III I I II I III I | II III I II III
Чрескожное содержание оксигемоглобина Ш 89—98 89—97 88—96 73-85* " 86-95
Артерио—венозная разни-ца по кислороду (мл О2/100 мл) 5,0—8,0 4,8—6,2 5,4—8,3 3,9-5,0* ** 5,4-7,8
рН венозной крови (ед) 7,37—7,42 7.38—7,44 7,38—7,42 7,48—7,56*** 7,40—7,46*** 7,22—7,36***
Частота дыхания (мин-1) 7-14 12—19* 13—16* 20—26* ** 17—24*** 28—34* **
Минутный объем дь(-хания(л'мин .м ) 3,0—5,0 3,5-6,5 3,5—4,5 6,0-9,5* ** 4,0-7,5* ** 9,5—14,5***
Содержание углекислого газа в выдыхаемой смеси (млСО2/100мл) 4,7—6,5 4,3—6,0 4,4—5,8 3,9-4,7*** 4,2—5,6 3,9-5,0*
* — р < 0,05 относительно 1—й колонки, ** — р<0,05 относительно предыдущей колонки по критерию Колмогорова—Смирнова

1.3.2. Уровни реактивности барорецепторов сосудов малого и большого круга кровообращения

Результатами преимущественно экспериментальных исследований доказано, что динамика таких показателей как частота сердечных сокращений (ЧСС), среднего артериального давления (САД), ударного и сердечного индексов (У И и СИ) и удельного периферического сосудистого сопротивления (УПСС) в ответ на изменения давления в сосудах малого круга кровообращения может быть представлена широким спектром амплитудно—временных изменений (Дворецкий Д.П., 1966; Дворецкий Д.П., Ткаченко Б.И., 1987; Малкин В.Б., Гора Е.П., 1990; Levy M.N., Martin P.Y., 1988). При этом, гемодинамические сдвиги, происходящие в течение первых 5—60 с после быстрого изменения внутригрудного давления, M.N.Levy, P.Y.Martin (1988) связывают с реактивностью барорецепторов малого круга кровообращения.

И.А.Эскин, Р.Н.Щедрина (1966), H.R.Warner, A.Cox (1962), A.S.Iberall, W.S.McCallock (1970) показали, что именно в этот временной интервал происходят нейрорефлекторные сдвиги физиологических показателей.

Изучение интенсивности и направленности изменений показателей центральной гемодинамики в первые 5—60 с апноэ после глубокого вдоха позволили дифференцировать у здоровых и больных людей пять уровней реактивности барорецепторов малого и большого кругов кровообращения (таблица 4).

Медиаторно опосредуемая ареактивность барорецепторов характеризовалась отсутствием изменений ЧСС, САД, УИ, УПСС и СИ в течение первой минуты апноэ после глубокого вдоха.

У здоровых людей и компенсированных больных она, вероятно, была обусловлена длительным воздействием различных стимулирующих агентов и развивающейся в связи с этим десенситацией (тахи-филаксией) барорецепторов (Меерсон Ф.З., Пшенникова М.Г., 1988; D.R. Sibley, R.J.Lefkowitz, 1985). У больных в декомпенсиро-ванном состоянии причинами ареактивности барорецепторов могли быть как тканевая гипоксия (Рябов Г.А. и соавт., 1984; Рябов Г.А., 1988; Schwartz S.etal., 1981; Suteu Yu. et al., 1981), так и "фармакологический" блок седативными, наркотическими и холинолитичес-кими препаратами, входящими в схему премедикации и интенсивной терапии (Малышев Ю.П., Заболотских И.Б., 1990; Заболотских И.Б., 1993).

^Как показали наши исследования, физиологическую основу низкой реактивности барорецепторов сосудов большого и малого кругов кровообращения составили:

— у компенсированных больных — длиннолатентные умеренной и слабой интенсивности сдвиги ЧСС, САД, УИ, СИ и УПСС;

Таблица 4 Градация уровней реактивности барорецепторов сосудов большого и малого кругов кровообращения по интенсивности изменейий и вариабельности показателей центральной гемодинамики в первые 5-60 с произвольного порогового апноэ при пробе Штанге

Показатели гемодинамики Уровни реактивности барорецспторов сосудов большого и малого кругов кровообращения
Ареактивность Низкий Умеренный Высокий Чрезмерно высокий
Латентность изменений (с) - длиннолатентные 26—60 среднелатентные 16—25 коротколатентные 5—15 длиннола тентные 26—60
Интенсивность изменений: Отсутствуют Слабая Умеренная Сильная
Частота сердечных сокращений (мин ) 0-1 2—4 5-8 9-15 9—18
Среднее артериальное давление (мм рт.ст.) 0—2 3-8 9—13 14—28 16—33
У парный индекс (мл'м ) 0-2 3-6 7 —VI 12—19 14—21
Удельное периферическое сосу - дисгое сопротивление (дин'с'см .м ) 0—50 60—150 160—250 260—510 290—640
Сердечный индекс (л'мин м ) 0-0,2. 0,3—0,5 0,6—1,0 1,1 — 1,6 1,3—2,1

__ У декомпенсированных больных — среднелатентные слабой

интенсивности сдвиги показателей центральной гемодинамики или умеренной интенсивности длиннолатентные изменения показателей центральной гемодинамики.

Для здоровых испытуемых оказалась репрезентативной оптимальная реактивность барорецепторов, основу которой определили среднелатентные умеренной интенсивности изменения показателей центральной гемодинамики.

Высокая реактивность этих барорецепторов, зарегистрированная у здоровых лиц и больных в компенсированном состоянии, характеризовалась либо коротколатентными умеренной и сильной интенсивности изменениями ЧСС, САД, УИ и УПСС, либо среднела-тентными сильной интенсивности изменениями показателей центральной гемодинамики.

Длиннолатентные сильной интенсивности изменения гемодина-мических показателей, согласно нашим представлениям, отражали чрезмерно высокую реактивность барорецепторов сосудов малого и большого кругов кровообращения.

1.3.3. Особенности гемодинамических сдвигов и изменений омега—потенциала, опосредованных уровнем реактивности баро— и хеморецепторов при разной длительности произвольного порогового апноэ

Наиболее подробно гемодинамическис эффекты произвольной задержки дыхания у людей отражены в работе В.В.Малкина и Е.П.Гора (1990). Авторами установлено, что во время вдоха и последующего апноэ у здоровых испытуемых происходит увеличение частоты сердечных сокращений, снижение ударного объема сердца, разнонаправленные изменения минутного объема кровообращения и отсутствие значимых изменений артериального давления.

В других исследованиях имеются разноречивые данные о динамике артериального давления после глубокого вдоха. Так, Э.В.Абол-тинь—Аболиня (1982), J.Sanchez, Ph.Sebert (1983) обнаружили значимое увеличение этого показателя, a M.Scharf Steven et al. (1979), напротив, — его уменьшение.

Разнонаправленное™ изменений ударного выброса у человека во время сдвигов внутригрудного давления S.C. De Cort et al. (1991) предложили связывать с состоянием сознания, положением тела, растяжимостью легких и т.д. Авторами обнаружено, что у здоровых людей ударный объем сердца максимален во время выдоха, тогда как у больных с различными неврологическими нарушениями во время вентиляции с положительным давлением наибольшее значение этого показателя получено во время вдоха.

По мнению К.В.Судакова (1985), рефлекторные реакции проявляются в условиях доминирования различных функциональных сие-

тем организма; т.е. функциональные системы оптимизируют рефлекторные реакции в зависимости от состояния метаболизма, I адаптивных и поведенческих процессов.

С.Ф.Дучин и Е.А.Городецкая (1984) показали, что чувствительность барорефлекса является свойством пейсмекера сердца в зависимости от активности ритмической нервной импульсации по—разному реагировать на один и тот же нейрогуморальный сигнал. Однако, в последние годы доказана ведущая роль нейронов ствола мозга в модуляции кардио—респираторных сдвигов (Sun M.K., Reis D.J., 1994; Horn E.M., WaldropT.G., 1994).

Результаты одновременной регистрации показателей центральной гемодинамики (ЧСС, САД, УИ, СИ, УПСС) и омега—потенциала во время произвольного порогового апноэ разной длительности г,! позволили, с одной стороны исследовать особенности гемодинамиче- . ских сдвигов, опосредованных уровнем реактивности барорецепторов и периферических хеморецепторов. С другой стороны, в этих условиях появилась возможность конкретизации соотношений динамики омега—потенциала с реактивностью механизмов нейрореф-лекторной регуляции сердечно—сосудистой и дыхательной систем.

У здоровых лиц при длительности ППА до 30с во время пробы Штанге было обнаружено отсутствие изменений всех исследованных показателей гемодинамики и омега—потенциала (рис. 2А). Отсутствие гемодинамических сдвигов в этих условиях указывало на ареактивность барорецепторов сосудов легких. Отсутствие ОП в этих условиях можно было интерпретировать как ареактивность механизмов нейрорефлекторной регуляции ССС и ДС, включая и ареактивность барорецепторов малого круга кровообращения. Это расширяло ранее сформулированные нами представления о причинах, обусловливающих отсутствие динамики ОП при длительности ППА до 30 с (Илюхина В.А. исоавт., 1982, 1986; Заболотских И.Б., 1988, 1990, 1993; Илюхина В.А., Заболотских И.Б., 1993).

Для здоровых лиц с длительностью ППА35—55 с было характерно появление на глубокий вдох и последующее апноэ короткола-тентных монофазных изменений:

— в сторону увеличения — ЧСС, УПСС, ОП (в виде монофазной позитивной волны: А=13—22 мВ; Т=0,5—1,0 мин);

— в сторону снижения — У И (рис. 2Б).

При этом, выявлены скачкообразные изменения в сторону увеличения САД (высокоинтенсивные) и СИ (слабой интенсивности).

Из данных литературы известно, что одновременное увеличение частоты сердечных сокращений, среднего артериального давления, сердечного выброса и периферического сосудистого сопротивления манифестирует появление рефлекса Бейнбриджа вследствие раздра- . жения барорецепторов правых отделов сердца и легочных артерий (Bainbridge F.А.,1915; VatnerS.F., Boettcher D.,1978). Выявленныев наших исследованиях коротколатентные однонаправленные изме-

у здорового и больного человека - student2.ru

Рис.2. Особенности изменений гемодинамических показателей и омега—потенциала в ходе выполнения пробы Штанге здоровыми лицами с низкой (А), умеренно сниженной (Б), высокой и чрезмерно высокой (Г) толерантностью к транзиторной гипоксии. По оси ординат: ЧСС — частота сердечных сокращений; САД — среднее артериальное давление; УИ — ударный индекс; СИ — сердечный индекс; УППС — удельное периферическое сосудистое сопротивление; ОП — омега—потенциал; по оси абсцисс: время (с). Стрелками ограничено время апноэ

нения вышеперечисленных гемодинамических показателей свидетельствовали о высокой реактивности барорецепторов легочных сосудов.

Ранее была установлена связь изменений ОП в виде негативной монофазной волны с ПЛ 20—30 с, амплитудой 6—12 мВ и периодом до 1,0 мин с адекватной холинергической реакцией бронхов у детей в ответ на глубокий вдох (Орлов А.В., 1988), с отсутствием признаков гипоксии у новорожденных детей в ответ на рефлекс Аршавского (Евсюкова И.И. и соавт., 1986), с оптимальной симпатоадреналовой реакцией ССС и ДС в ответ на разовое приседание или пробу Штанге у здоровых людей и компенсированных больных (Илюхина В. А. и соавт., 1982; Илюхина В.А., 1986; Заболотских И.Б., 1988; Илюхина В.А., Заболотских И.Б., 1993).

Выявленный в наших исследованиях параллелизм коротколатен-тных, высокоинтенсивных монофазных негативных изменений ОП с гемодинамическими сдвигами (в сторону нарастания ЧСС, УПСС, САД и СИ) позволил конкретизировать физиологическую значимость этих типовых изменений ОП, как отражение высокой реактивности механизмов нейрорефлекторной регуляции сердечно—сосудистой и дыхательной систем.

Для гемодинамических сдвигов у здоровых лиц с высокой толерантностью к транзиторной гиперкапнии и гипоксии (длительность ППА от 60 до 90 с) в ходе выполнения пробы Штанге были характерны среднелатентные, умеренной интенсивности, монофазные изменения:

— в сторону увеличения У И (И=6— 12 мл.м-2) и СИ (И — 0,47— 0,79 л.мин~'.м2) с ЛП — 13—21 с;

— в сторону снижения ЧСС (И — 4—10 мин-1); УПСС (И — 235—370дин.с.см ); САД (И —5—15ммрт.ст.) и омега—потенциала (в виде монофазной негативной волны: А=8—14 мВ; 1^1,0—1,5 мин) с ЛП —12—20 с (рис. 2В).

Таким образом, для этих лиц было характерно включение в ответ на глубокий вдох и последующее произвольное апноэ гемодинами-ческого рефлекса Парина—Швигка в виде одновременного снижения ЧСС, САД, УПСС, опосредуемого барорецепторами микроцир-куляторного русла легких (Парин В.В., 1939; Ткаченко Б.И., Дворецкий Д.П., 1984; Schwiegk H., 1935). Параллелизм динамики омега—потенциала с гемодинамическими сдвигами в этих условиях рассматривался нами как физиологический эквивалент вагоинсу-лярной направленности реакции ССС и ДС на стресс—воздействие.

При длительности ППА более 90 с у здоровых лиц было выявлено длиннолатентное, высокоинтенсивное скачкообразное увеличение САД (И — 11—21 мм рт.ст.), УИ (И=11 —18 мл.м-2) и СИ (И — 1,15—1,49 л.мин '.м-2). При этом параллельно наблюдалось монофазное снижение ЧСС (И=10—14 мин-1), УПСС (И — 340—570

дин с см .-м ) и омега—потенциала (в виде монофазной негативной волны: А=15-28 мВ) с ЛП 22—34 с (рис. 2D.

Выявленные закономерности гемодинамических сдвигов свидетельствовали о том, что во время ППА после глубокого вдоха у лиц этой группы возникал гемодинамический прессорный барорефлекс (LewinR- etal., 1961; Kan W., LedcoraeY., 1976). Усиление сердечного выброса в сочетании с периферической вазодилятацией в этих условиях могли указывать на активацию бета—адренорецепторов сердца и сосудов (Сергеев П.В., Шимановский Н.Л., 1987; Авакян О.М., 1988; AhlguistR., 1948, 1962).

Во второй половине ППА у этих лиц выявлены гемодинамиче-ские проявления прессорного хеморефлекса в виде отсроченного увеличения периферического сосудистого сопротивления и среднего артериального давления, что сопоставимо с данными Д.П. Дворецкого (1969), McCloskey D.Y. (1979), Coleridge Y.C.G., Coleridge Н.М. (1979). Обнаружение параллелизма длиннолатентных сходных по направленности и интенсивности изменений омега—потенциала и показателей гемодинамики, в свете существующих представлений, можно рассматривать как физиологические корреляты чрезмерно высокой реактивности механизмов нейрорефлекторной регуляции сердечно—сосудистой и дыхательной систем при парадоксально высокой реактивности барорецепторов сосудов большого и малого кругов кровообращения.

У больных в компенсированном состоянии выявлены следующие закономерности в соотношении изменений, исследованных показателей гемодинамики и омега—потенциала в ходе выполнения пробы Штанге при разной длительности произвольного порогового апноэ (рис. 3).

При длительности ППА до 30 с у компенсированных больных выявлены коротколатентные (5—15 с), скачкообразные сдвиги показателей гемодинамики:

— в виде снижения САД (на 8—13 мм рт.ст.), У И (на 5—10 мл.м 2) и СИ (на 0,38—0,55 л.мин-1-2);

— в виде увеличения ЧСС (на 6—11 мин-1) и УПСС (на 260— 410дин.с.см~5-2).

В этих услових динамика омега—потенциала была представлена коротколатентной (5—15 с) низковольтной (5—9 мВ) монофазной позитивной волной (рис. ЗА). Выявленные закономерности гемодинамических сдвигов свидетельствуют о включении депрессорного барорефлекса в виде снижения САД и увеличения ЧСС (Дворецкий Д-П., 1966; Colleridge Y„ Kidd С, 1963). Причиной появления депрессорного барорефлекса у больных с длительностью ППА до 30 с могло быть снижение насосной функции правых отделов сердца в условиях повышения внутригрудного давления и давления в малом круге кровообращения при вдохе (Зильбер А.П., 1984; Данилов

у здорового и больного человека - student2.ru

Рис. 3. Особенности изменений показателей центральной гемодинамики и омега —потенциала в ходе выполнения пробы Штанге больными в компенсированном состоянии с низкой (А), умеренно сниженной (Б), высокой (В) и чрезмерно высокой (Г) толерантностью к транзиторной гиперкапнии и гипоксии. Обозначения см. на рис. 2.

26

Л.Н., 1985). При этом, адаптивным гемодинамическим изменением оказывалась преходящая периферическая вазокострикция.

Таким образом, при низкой толерантности к транзиторной ги-перкапнии и гипоксии у компенсированных больных выявлена повышенная реактивность механизмов нейрорефлекторной регуляции ССС и СД, включая высокореактивный депрессорный барорефлекс при чрезмерно высокой реактивности периферических хеморецеп-торов. В параметрах динамики ОП это проявлялось низковольтной, монофазной негативной волной с ПЛ 5—15 с, что было сопоставимо с умеренно повышенной реактивностью ССС и ДС.

При умеренно сниженной толерантности к гиперкапнии и гипоксии у компенсированных больных (ППА=35—55 с) в ходе выполнения пробы Штанге обнаруживались коротколатентные (10—12 с) скачкообразные умеренной интенсивности монофазные изменения показателей гемодинамики в виде:

— увеличения УИ (на 5—12 мл.м-2) и СИ (на 0,50—0,85 л.мин .м );

Наши рекомендации