Изолированной структурой) движения
J Подкорковые | Побуждение s | ||||
Т и корковые | к действию | ||||
/ мотивационные | |||||
/ зоны | / | ||||
// у | План | ||||
/ ^ Ассоциативные | Замысел | ||||
/* зоны коры | действия | ||||
Cr-S^< | |||||
Сенсорны | Х~^ Базальные^ Мозжечок-^ | М | |||
\ пути | } Т L....t | i Схемы целенаправ- | > | Программа | |
j ленных движений | |||||
\ ^ Таламус | 1 (приобретенные i и врожденные) | ||||
\ Двигательная кора | |||||
А Ствол мозга -^— | Регуляция позы | Ч Выполнение | |||
Спинномозговые, нейроны > | Моно- и полисинап-тические рефлексы Длина мышц | ) | |||
Моторные единицы |
Рис.11.1 Общий план организации двигательной системы.
Важнейшие двигательные структуры и их основные взаимосвязи указаны в левом столбце. Для простоты все чувствительные пути объединены вместе (кружок слева). В среднем столбце перечислены самые главные и твердо установленные функции, обнаруженные при раздельном изучении каждой из этих структур. В правом столбце указано, каким образом эти функции связаны с возникновением и выполнением движения. Следует обратить внимание на то, что базальные ганглии и мозжечок расположены на одном уровне, а двигательная кора участвует в превращении программы движения в его осуществление (по Дж. Дуделу с соавт., 1985)
274
Моторная или двигательная кора расположена непосредственно кпереди от центральной борозды. В этой зоне мышцы тела представлены топографически, т.е. каждой мышце соответствует свой участок области. Причем мышцы левой половины тела представлены в правом полушарии, и наоборот.
Двигательные пути, идущие от головного мозга к спинному, делятся на две системы: пирамидную и экстрапирамидную. Начинаясь в моторной и сенсомоторнои зонах коры больших полушарий, большая часть волокон пирамидного тракта направляется прямо к эфферентным нейронам в передних рогах спинного мозга. Экстрапирамидный тракт, также идущий к передним рогам спинного мозга, передает им эфферентную импульсацию, обработанную в комплексе подкорковых структур (базальных ганглиях, таламусе, мозжечке).
11.2. Классификация движений
Все многообразие форм движения животных и человека основывается на физических законах перемещения тел в пространстве. При классификации движений необходимо учитывать конкретные целевые функции, которые должна выполнять двигательная система. В самом общем виде таких функций четыре: ^поддержание определенной позы; 2) ориентация на источник внешнего сигнала для его наилучшего восприятия; 3) перемещения тела в пространстве; 4) манипулирование внешними вещами или другими телами. Иерархия уровней мозгового управления движениями также находится в зависимости от требований к структуре движения. Установлено, что подкорковый уровень связан с набором врожденных или автоматизированных программ.
Автоматизированные и произвольные движения. Проблема разделения указанных категорий движения сложна. Во многих случаях грань между автоматизированным и произвольно контролируемым действием очень подвижна. Обучение устойчивым двигательным навыкам представляет собой переход от постоянно контролируемой цепочки более или менее осознанно выполняемых двигательных действий к автоматизированной слитной «кинетической мелодии», которая исполняется со значительно меньшими знер-
гетическими затратами. В то же время достаточно небольшого изменения хотя бы одного из звеньев «кинетической мелодии», чтобы она перестала быть полностью автоматизированной, и для ее новой автоматизации требуется вновь вмешательство произвольной регуляции.
Для того чтобы избежать трудностей, возникающих при попытках разделить двигательные акты на «автоматические» и «волевые», английский невропатолог X. Джексон в начале века предложил иерархическую классификацию всех двигательных актов (т.е. движений и их комплексов) от «полностью автоматических» до «совершенно произвольных». Эта классификация оказывается полезной и в настоящее время. Так, например, дыхание представляет собой в значительной степени автоматический комплекс движений грудной клетки, мышц плечевого пояса и диафрагмы, сохраняющийся даже при самом глубоком сне и в состоянии наркоза, когда все остальные движения полностью подавлены. В случае, если при помощи тех же самых мышц осуществляется кашель или небольшие движения туловища, то подобный двигательный акт «менее автоматичен». В то же время при пении или речи эти мышцы участвуют уже в «совершенно неавтоматическом» движении. Из данного примера ясно также, что «более автоматические» движения связаны главным образом с врожденными центральными поведенческими программами, тогда как «менее автоматические» или «совершенно произвольные» движения появляются в процессе накопления жизненного опыта.
Ориентационныедвижения. Система движений такого рода, связана, во-первых, с ориентацией тела в пространстве, и во-вторых, с установкой органов чувств в положение, обеспечивающее наилучшее восприятие внешнего стимула. Примером первого может служить функция поддержания равновесия, второго — движения фиксации взора. Фиксация взора выполняется в основном глазодвигательной системой. Изображение неподвижного или движущегося предмета фиксируется в наиболее чувствительном поле сетчатки. Координация движения глаз и головы регулируется специальной системой рефлексов.
Управление позой.Поза тела определяется совокупностью значений углов, образуемых суставами тела животного или человека в
276
результате ориентации в поле тяготения. Механизм позы складывается из двух составляющих: фиксации определенных положений тела и конечностей и ориентации частей тела относительно внешних координат (поддержание равновесия). Исходная поза тела накладывает некоторые ограничения на последующее движение. К низшим механизмам управления позой относятся спинальные, шейные установочные и некоторые другие рефлексы, к высшим — механизмы формирования «схемы тела».
Термином «схема тела» обозначают систему обобщенной чувствительности пространственных координат и взаимоотношений отдельных частей тела в покое и при движении. Общую «карту» тела для каждого полушария мозга обычно представляют в виде «гомункулуса». Топографически распределенная по поверхности коры чувствительность всего тела составляет ту основу, из которой путем объединения формируются целостные функциональные блоки крупных отделов тела. Эти интегративные процессы завершаются у взрослого организма и представляют собой закодированное описание взаиморасположения частей тела, которые используются при выполнении автоматизированных стереотипных движений.
Базой этих процессов служит анатомически закрепленная «карта» тела, поэтому такие процессы составляют лишь основу статического образа тела. Для его формирования необходимо соотнести эту информацию с положением тела по отношению к силе земного притяжения и взаиморасположением функциональных блоков тела в системе трех пространственных плоскостей. Вестибулярная система воспринимает перемещение всего тела вперед — назад, вправо — влево, вверх — вниз, а соответствующая информация поступает в теменные.зоны коры, где происходит ее объединение с информацией от скелетно-мышечного аппарата и кожи. J уда же поступает импульсация от внутренних органов, которая также участвует в создании на бессознательном уровне особого психофизиологического образования — статического образа тела. Таким образом, статический образ тела представляет собой систему внутримозговых связей, основанную на врожденных механизмах и усовершенствованную и уточненную в онтогенезе. Выполняя ту или иную деятельность, человек меняет взаиморасположение частей тела, а, обучаясь новым двигательным навыкам, он
277
формирует новые пространственные модели тела, которые и составляют основу динамического образа тела. В отличие от статического, динамический образ тела имеет значение лишь для данного конкретного момента времени и определенной ситуации, при изменении которой он сменяется новым образом тела. Динамический образ базируется на текущей импульсации от чувствительных элементов кожи, мышц, суставов и вестибулярного аппарата. Не исключено, что скорость и точность формирования динамического образа тела — фактор, определяющий способность человека быстро овладевать новыми двигательными навыками.
В мозге происходит постоянное взаимодействие того и другого образов тела, осуществляется сличение динамического образа с его статическим аналогом. В результате этого формируется субъективное ощущение позы, отражающее не только положение тела в данный момент времени, но и возможные его изменения в непосредственном будущем. Если согласование не достигнуто, то вступают в действие активные механизмы перестройки позы. Итак, для того чтобы сменить позу, необходимо сравнить закодированный в памяти статический образ тела с его конкретной вариацией — динамическим образом тела.
Управление локомоцией.Термин локомоция означает перемещение тела в пространстве из одного положения в другое, для чего необходима определенная затрата энергии. Развиваемые при этом усилия должны преодолеть прежде всего силу тяжести, сопротивление окружающей среды и силы инерции самого тела. На локомо-цию влияют характер и рельеф местности. Во время локомоции организму необходимо постоянно поддерживать равновесие.
Типичные примеры локомоции — ходьба или бег, которые отличаются стереотипными движениями конечностей, причем для каждой формы локомоции характерны две фазы шага: фаза опоры и фаза переноса. Ходьба человека характеризуется походкой, т.е. присущим ему особенностями перемещения по поверхности. Походка оценивается по способу распределения по времени циклических движений конечностей, длительностью опорной фазы и последовательностью перемещения опорных конечностей.
В спинном мозге обнаружена цепь нейронов, выполняющая функции генератора шагания. Она ответственна за чередование пе-
278
риодов возбуждения и торможения различных мотонейронов и может работать в автоматическом режиме. Элементарной единицей такого центрального генератора является генератор для одной конечности. Не исключено, что у каждой мышцы, управляющей одним етставом, есть собственный генератор. Когда человек движется, такие генераторы работают в едином режиме, оказывая друг на друга возбуждающее влияние.
Как известно, спинной мозг находится под непрерывным контролем высших двигательных центров. По отношению к локомоции этот контроль преследует ряд целей: 1) быстро запускает локо-моцию, поддерживает постоянную скорость или изменяет ее, если требуется, а также прекращает ее в нужный момент времени; 2) точно соразмеряет движение (и даже отдельный шаг) с условиями среды; 3) обеспечивает достаточно гибкую позу, чтобы соответствовать различным условиям передвижения, таким, например, как ползание, плавание, бег по снегу, перенос груза и т.д.
Очень важную роль в этом контроле играет мозжечок, который обеспечивает коррекцию и точность постановки конечностей на основе сравнения информации о работе спинального генератора и реальных параметров движений. Предполагается, что мозжечок программирует каждый следующий шаг на основе информации о предыдущем. Другой важнейший уровень мозга, куда направляется информация о характере выполнения движения, это большие полушария с их таламическими ядрами, стриопаллидарной системой и соответствующими зонами коры головного мозга.
Обратнаясвязь. Большое значение на этих уровнях контроля локомоции имеет обратная связь, т.е. информация о результатах выполняемого движения. Она поступает от двигательных аппаратов к соответствующим мозговым центрам. Многие движения постоянно корректируются, благодаря показаниям соответствующих сенсорных датчиков, расположенных в скелетных мышцах и передающих информацию в разные отделы мозга вплоть до коры. Движения, базирующиеся на врожденных координациях, в меньшей степени требуют обратной связи от локомоторного аппарата. Наряду с этим все новые формы движения, в основе которых лежит формирование новых координационных отношений, всецело зависят от обратной связи со стороны двигательного аппарата.
279
Очень важно, что сенсорные коррекции способны изменить характер движения по ходу его осуществления. Без этого механизма человек не имел бы возможности овладевать новыми локомоторными актами (и не только «локомоторными шедеврами», которые демонстрируют мастера спортивной гимнастики, но и более простыми — такими, например, как езда на велосипеде). Суть дела в том, что сенсорные коррекции служат для уточнения динамического образа тела, максимально приближая его к требованиям осуществления движения.
Итак, простые движения (например, скачкообразные движения глаз или быстрые движения конечностей) выполняются практически без проприоцептивной обратной связи по жесткой «запаянной» программе. Любое же сложное движение требует предварительного программирования. Для сложных движений очень важно непрерывное по времени сличение их конкретной реализации на основе обратной афферентации со сформированной программой, моделью сложного движения. Эти сличения передаются к аппаратам программирования по каналам внутренней обратной связи, для того, чтобы вовремя суметь перестроить или перепрограммировать программу (модель) сложного движения, в случае, например, резкого изменения внешней ситуации.
Следует особо подчеркнуть, что с помощью обратной связи кора информируется не об отдельных параметрах движений, а о степени соответствия предварительно созданной двигательной программы тому наличному движению, которое достигается в каждый момент времени.
Манипуляторные движения— яркий пример произвольных движений, которые обусловлены мотивацией. Эти движения локальны и решают следующие задачи: 1) выбор ведущего мышечного звена; 2) компенсация внешней нагрузки; 3) настройка позы; 4) соотнесение координат цели и положения собственного тела.
Отличительной чертой манипуляторных движений является их зависимость от центральной программы, поэтому ведущая роль в из осуществлении играют фронтальная кора, базальные ганглии и мозжечок. Ведущая роль в программировании быстрых манипуляторных движений принадлежит мозжечковой системе, а в программировании медленных — базальным ганглиям.
280
11.3. Функциональная организация произвольного движения
Программирование движений.Каждому целенаправленному движению предшествует формирование программы, которая позволяет прогнозировать изменения внешней среды и придать будущему движению адаптивный характер. Результат сличения двигательной программы с информацией о движении, передающейся по системе обратной связи, является основным фактором перестройки программы. Последнее зависит от мотивированности движения, его временных параметров, сложности и автоматизированное™.
Мотивации определяют общую стратегию движения. Каждый конкретный двигательный акт нередко представляет собой шаг к удовлетворению той или иной потребности. Биологические мотивации приводят к запуску либо жестких, в значительной степени генетически обусловленных моторных программ, либо формируют новые сложные программы. Однако мотивация определяет не только цель движения и его программу, она же обусловливает зависимость движения от внешних стимулов. В качестве обратной связи здесь выступает удовлетворение потребности.
Двигательная команда определяет, как будет осуществляться запрограммированное движение, т.е. каково распределение во времени тех эфферентных залпов, направляемых к мотонейронам спинного мозга, которые вызовут активацию различных мышечных групп. В отличие от программы команды движения должны точно соответствовать функциональному состоянию самого скелетно-двига-тельного аппарата как непосредственного исполнителя этих ко-• манд. Непосредственное управление движением обусловливается активностью моторной зоны коры, полосатого тела и мозжечка. Полосатое тело участвует в преобразовании «намерения действовать» в соответствующие «командные сигналы» для инициации и контроля движений.
Особую роль в программировании движения играют ассоциативные системы мозга и, в первую очередь, таламопариетальная ассоциативная система. Во-первых, именно она участвует в формировании интегральной схемы тела. При этом все части тела соотносятся не только друг с другом, но и с вестибулярными и зрительными сигнала-
281
ми. Во-вторых, она регулирует направление внимания к стимулам, поступающим из окружающей среды так, чтобы учитывалась ориентация всего тела относительно этих стимулов. Эта система «привязана» к настоящему моменту времени и к анализу пространственных взаимоотношений разномодальных признаков.
Таламофронтальная ассоциативная система отвечает за переработку информации о мотивационном состоянии и происходящих в организме вегетативных изменениях. Фронтальная ассоциативная область коры опосредует мотивационные влияния на организацию поведения в целом благодаря связям с другими ассоциативными областями и подкорковыми структурами. Таким образом, фронтальные отделы коры больших полушарий, контролируя состояние внутренней среды организма, сенсорные и моторные механизмы мозга, обеспечивают гибкую адаптацию организма к меняющимся условиям среды.
Функциональная структура произвольного движения.В обеспечении любого движения принимают участие разнообразные компоненты нервной системы, поэтому один из главных вопросов состоит в том, как обеспечивается единовременность и согласованность команды, поступающей к исполнительным аппаратам. Независимо от стратегии и тактики конкретного движения, основная задача двигательной системы, обеспечивающей программу действия, заключается в координации всех компонентов команды.
ЦНС располагает некоторым числом генетически закрепленных программ (например, локомоторная программа шагания, базирующаяся на активности спинального генератора). Такие простые программы объединяются в более сложные системы типа поддержания вертикальной позы. Подобное объединение происходит в результате обучения, которое обеспечивается благодаря участию передних отделов коры больших полушарий.
Самой сложной и филогенетически самой молодой является спо
собность формировать последовательность движений и предвидеть
ее реализацию. Решение этой задачи связано с фронтальной ассо
циативной системой, которая запоминает и хранит в памяти такие
последовательности движений. Высшим отражением этого кодиро
вания у человека является вербализация или словесное сопрово
ждение основных понятий движения. ,.,, , ,.......
Всеобщей закономерностью работы системы управления движениями является использование обратной связи. Сюда входит не только проприоцептивная обратная связь от начавшегося движения, но и активация систем поощрения или наказания. Кроме того, включается и внутренняя обратная связь, т.е. информация об активности нижележащих уровней двигательной системы или эфферентная копия самой двигательной команды. Этот вид обратной связи необходим для выработки новых двигательных координации. Для движений различной сложности и скорости обратная связь может замыкаться на разных уровнях. Поэтому оба типа управления — программирование и слежение — могут сосуществовать в системе управления одним и тем же движением.
В связи с вышеизложенным целесообразно привести высказывание выдающегося физиолога Н.А.Бернштейна о том, что движение ... «ведет не пространственный, а смысловой образ и двигательные компоненты цепей уровня действий диктуются и подбираются по смысловой сущности предмета и того, что должно быть проделано с ним» (1974, с.131).
11.4.Электрофизиологические коррелятыорганизации
Движения
Электрофизиологические методы используются для изучения разных сторон двигательной активности, и, в первую очередь, тех из них, которые недоступны прямому наблюдению. Ценную информацию о физиологических механизмах организации движения дают методы оценки взаимодействия зон коры мозга, анализ локальной ЭЭГ и потенциалов, связанных с движением, а также регистрация активности нейронов.
Исследование межзональных связей биопотенциалов мозга позволяет проследить динамику взаимодействия отдельных зон коры на разных этапах выполнения движения, при обучении новым двигательным навыкам, выявить специфику межзонального взаимодействия при разных типах движений.
Пространственная синхронизация (ПС), т.е. синхронная динамика электрических колебаний, регистрируемых из разных точек коры больших полушарий, отражает такое состояние структур моз-
283
::№— ■ ^^iiiiiiijjjiiik ДММДрИ
II 1 га, при котором облегчается распространение возбуждения и соз-
1 даются условия для межзонального взаимодействия. Метод реги-
II страции ПС был разработан выдающимся отечественным физио-
11| логом М.Н. Ливановым.
Исследования ритмических составляющих ЭЭГ отдельных зон и
|| их пространственно-временных отношений у человека во время вы-
полнения произвольных движений дал реальную возможность no
il|| дойти к анализу центральных механизмов функциональных взаимо-
1,1 действий, складывающихся на системном уровне при двигатель-
1 ной деятельности. Корреляционный анализ ЭЭГ, зарегистрирован-
1 ной во время выполнения ритмических движений, показал, что у
|! | человека в корковой организации движений принимают участие не
Только центры моторной коры, но также лобные и нижнетемен- ные зоны. i Обучение произвольным движениям и их тренировка вызыва- I ют перераспределение межцентральных корреляций корковых I биопотенциалов. В начале обучения общее число центров, вовле- I , ченных в совместную деятельность, резко возрастает, и усиливают- I ся синхронные отношения ритмических составляющих ЭЭГ мотор- II ных зон с передними и задними ассоциативными областями. По ме-I ре овладения движением общий уровень ПС значительно снижа- | || :•' ется, и, напротив, усиливаются связи моторных зон с нижнетемен- ными. II Важно отметить, что в процессе обучения происходит перестрой- "| ка ритмического состава биопотенциалов разных зон коры: в ЭЭГ 1 У I начинают регистрироваться медленные ритмы, совпадающие по ча- ' И' стоте с ритмом выполнения движений. Эти ритмы в ЭЭГ челове-
Ка получили название «меченых». Такие же меченые колебания бы- I ли обнаружены у детей дошкольного возраста при совершении ими I ритмических движений на эргографе. I Систематические исследования ЭЭГ человека во время осуще- II ствления циклической (периодически повторяющейся) и ацикли- ческой двигательной активности позволили обнаружить значитель- 11 ные изменения в динамике электрической активности коры боль- ших полушарий. В ЭЭГ происходит усиление как локальной, так и I дистантной синхронизации биопотенциалов, что выражается в на- ! растании мощности периодических составляющих, в изменениях ча-284 статного спектра авто- и кросскоррелограмм, в определенной со-настройке максимумов частотных спектров и функций когерентности на одной и той же частоте. ПС и время реакции. Время реакции — один из наиболее простых двигательных показателей. Поэтому особый интерес представляет тот факт, что даже простая двигательная реакция может иметь различающиеся физиологические корреляты в зависимости от увеличения или сокращения ее длительности. Так, при сопоставлении картины межцентральных корреляционных отношений спектральных составляющих ЭЭГ мозга со временем простой двигательной реакции выяснилось, что перестройка пространственно-временных отношений ЭЭГ ассоциативных зон связана с временем реакции на заданный стимул. При быстрых реакциях у здорового человека чаще всего высокие корреляционные связи биопотенциалов возникали в обеих нижнетеменных областях (несколько больше в левом полушарии мозга). Если время реакции возрастало, это сопровождалось синхронизацией биопотенциалов в лобных отделах коры и из взаимодействия исключалась нижнетеменная область левого полушария. Кроме того, была обнаружена зависимость между величинами фазовых сдвигов альфа-ритма, зарегистрированного в лобных, прецентральных и затылочных областях мозга и скоростью простой двигательной реакции. Важно отметить, что усиление синхронизации биопотенциалов наступает у человека уже в предрабочем состоянии в процессе сосредоточения перед двигательным действием, а также при мысленном выполнении движений. ПС и специфика движения. Кроме неспецифического усиления пространственной синхронизации биопотенциалов было отмечено ее выраженное избирательное нарастание между зонами коры, непосредственно участвующими в организации конкретного двигательного акта. Например, наибольшее сходство в электрической активности устанавливается: при движении рук — между лобной областью и моторным представительством мышц верхних конечностей; при движении ног — между лобной областью и моторным представительством мышц нижних конечностей. При точностных действиях, требующих тонкой пространственной ориентации и зрительного контроля (стрельба, фехтование, баскетбол) уси- 285 ливаются взаимодействия между зрительными и моторными областями. Была выявлена сложная динамика ПС биопотенциалов различных участков мозга у спортсменов при выполнении различных упражнений и показана зависимость нарастания взаимодействия ритмических составляющих ЭЭГ от режима двигательной деятельности, от квалификации спортсменов, от способности человека решать тактические задачи, от сложности ситуации. Так, у спортсменов высокой квалификации межцентральные взаимодействия выражены гораздо интенсивнее и локализованы более четко. Выяснилось также, что более сложные двигательные задачи требуют для своего успешного решения более высокого уровня пространственной синхронизации ритмов ЭЭГ, а время решения тактических задач коррелирует со скоростью нарастания межцеитральных взаимодействий. При этом двигательный ответ следует после достижения максимума синхронности биопотенциалов в коре головного мозга. В совокупности исследования ПС биопотенциалов мозга у человека позволили установить, что при выполнении простых и сложных двигательных актов во взаимодействия вступают разные центры мозга, образуя при этом сложные системы взаимосвязанных зон с фокусами активности не только в проекционных, но и в ассоциативных областях, особенно лобных и нижнетеменных. Эти межцентральные взаимодействия динамичны и изменяются во времени и пространстве по мере осуществления двигательного акта.