Генная и клеточная терапия моногенных и мультифакторных заболеваний
Первая часть (до синей линии) это введение в генотерапию, в принципе, чтобы лучше понять сами методы, и, чуть что, не быть словленным преподавателем. Если нету времени и нужен КОНКРЕТНО материал по вопросу, пролистывайте сразу за синюю линию.
Генная терапия первоначально нацеливалась на лечение моногенных наследственных заболеваний, но затем область её применения расширилась, и она стала рассматриваться как потенциально универсальный подход к лечению всего спектра болезней, включая также инфекционные заболевания, рак, атеросклероз, диабет и ряд других.
«Лечение генов» - исправление дефекта в гене (моногенные болезни) – на уровне соматических и половых клеток – замена мутантного гена на нормальный.
«Лечение генами» - коррекция дефекта путем введения полноценного работающего гена (кДНК).
Сначала немного общей теории :
Решающим условием успешной генотерапии является обеспечение эффективной доставки, то есть трансфекции (в широком смысле) или трансдукции (при использовании вирусных векторов) чужеродного гена в клетки-мишени, обеспечение длительного функционирования его в этих клетках и создание условий для полноценной работы гена (его экспрессии).
Стратегии коррекции генетических дефектов:
По типу векторной системы:
Вирусная
· РНК-содержащие вирусы (ретровирусы(онкоретровирусы, лентивирусы));
· ДНК-содержащие вирусы (аденовирусы, герпесвирусы, аденоассоциированные вирусы);
Преимущества вирусных векторов: трансдукция большого числа клеток; тропизм; устойчивость к лизосомной деградации.
Недостатки вирусных векторов: иммуногенность (со смертельными исходами – адено- и герпесвирусы); потенциальная канцерогенность (ретровирусы).
Невирусная
· Прямая инъекция в клетку, ткань, орган (она же микроинъекция);
· Липофекция (с помощью различных модифицированных липосом (липидных пузырьков с ДНК внутри);
· Электропорация;
· В составе плазмиды;
· Комплексиррованная ДНК(плазмидная ДНК, соединенная с солями, белками и тд.);
· Генное ружье (ДНК присоединено к золотым частицам, выстреливаемых в ткани пациента);
· Рецептор-опосредованный эндоцитоз.
Преимущества невирусной доставки: относительная безопасность; отсутствие иммунного ответа; простота применения.
Недостатки невирусной доставки: низкая эффективность трансфекции; низкий уровень экспрессии.
Теоритически наиболее радикальным и эффективным способом является замена дефектного гена в половых клетках (фетальная генотерапия), однако есть этические проблемы. На данный момент все геннотерапевтические подходы базируются на генотерапии на уровне соматических клеток.
По механизму действия встраиваемого гена или переносимой молекулы ДНК, генотерапия делится на положительную (восстановление функции гена(через восстановление его работы или вставки новой рабочей копии) или отрицательную – подавления функции гена). Плюс существует подход направленный на усиление иммунного ответа, который используется в основном в генотерапии рака (об этом ниже).
Так же новую ген информацию можно вносить в организм человека, в составе его же предварительно трансформированных in vitro клеток г.з. ex vivo подход. Подход, при котором, ген информация вводится непосредственно в клетки живого человека, называется (внезапно) in vivo, локальное введение в какие-то определенные участки называется in situ. На данный момент существуют успешные прецеденты введения ген информации in utero (в эмбрион), в Великобритании, совсем недавно спасли ребенка от митохондриальной болезни.
Дополнительные генотерапевтические подходы:
· Антисенс ДНК, РНК (+): специфичность, можно исп в любом векторе, неиммунногенные; (-): быстрая деградация в клетке);
· Рибозимы (+): обладают свойствами ферментов – не расходуются, способны к катализу расщепления мишени, в отличие от белков неиммунногенны, индуцируют синтез интерферона; (-): быстрая деградация;
· Трансдоминантные негативные белки;
· Одноцепочечные антитела;
· Суицидные гены (вместо «лечения» клетки, ее можно просто убить, используется в антираковых системах, (подробнее будет ниже);
· Введение антиген-специфичных лимфоцитов;
· Химеропластика (гибриды ДНК/РНК шпилечной структуры, производят гомологичную рекомбинацию в ядре);
Тут идут исключительно примеры генотерапевтических методов, описания заболеваний смотрите в предыдущих по нумеровке билетах.
Моногенные заболевания:
Недостаточность аденозиндезаминазы(АДА синдром) – первый относительно удачный пример использования генотерапии. Она была осуществлена 14 сентября 1990 года. Эта дата считается днем рождения реальной генной терапии.
С помощью лейкофореза из периферической крови выделяли мононуклеарные клетки, затем их растили в культуре в условиях пролиферации Т-клеток. Затем в пролиферирующие в условиях in vitro клетки вводили ретровирусный вектор, который содержал нормальный ген ADA. Через несколько дней трансдуцированные клетки крови вводили обратно пациентке. Процесс повторяли 7 раз на протяжении 10 месяцев. Эффект был положительным, ¼ лифоцитов в организме получили рабочий ген. Раз в 3-5 месяцев введение модифицированных клеток повторяли. В настоящее время генная терапия данного заболевания развивается в направлении использования стволовых клеток пациента. Это позволит значительно сократить количество введений модифицированных клеток за счет их многократных делений уже в самом организме и при достижении селективного и количественного преимущества модифицированных стволовых клеток над нативными сформирует достаточный уровень фермента в организме.
Наследственная гиперхолестеролемия - Известно, что неделящиеся гепатоциты не могут быть инфицированы ретровирусами. После гепатоэктомии гепатоциты начинают пролиферировать и приобретают способность инфицироваться ретровирусами. В гепатоциты, полученные из печени больного, с помощью ретровирусного вектора была введена кДНК гена нормального рецептора LDL-R. После реинфузии рекомбинантных гепатоцитов через воротную вену в печень наблюдалось уменьшение содержания в крови липопротеинов низкой плотности (в частности, холестерина) и соотношения липопротеинов низкой плотности к липопротеинам высокой плотности. Это означает, что введенные клетки функционировали in vivo и осуществляли интернализацию и обмен холестеринов.
Гемофилия В – Были проведены успешные опыты на собаках с использованием стратегии ех vivo с
доставкой в гепатоциты кДНК, кодирующей фактор IX. Удалось добиться синтеза фактора IX в количествах, составляющих 0,1% от нормального количества фактора IX в плазме крови. При попытке повысить концентрацию фактора IX были использованы аденовирусные векторы, однако эффект был недолговременным. Кровь животных свертывалась, однако эффект полностью пропадал после 2х месяцев (типичный недостаток аденовирусных векторов).
Гемофилия A - Появились сообщения об успешном введении мышам укороченного гена фактора VIII в составе ретровирусного вектора. В результате достигается терапевтический уровень фактора в крови.
Муковисцидоз - Показано, что замена 6-10% клеток легочного эпителия трансфецированными клетками позволит восстановить нормальные транспортные функции трансмембранных каналов, обеспечивающих перенос ионов хлора. Ретровирусы не подходят, так как не ифицируют неделящиеся клетки, аденовирусы подходят с оговорками, так как в опытах на мышах вызывали воспалительные реакции. Проблема дополнительно заключается в барьере из гликокаликса на поверхности клеток. Один из подходов для решения данной проблемы заключается в модификации вектора, который включает в себя определенный лиганд к рецептору на поверхности клеток легочного эпителия. Взаимодействие лиганда с рецептором обычно приводит к интернализации вектора вместе с рецептором внутрь клетки. В качестве такого рецептора был выбран трансмембранный рецептор P2Y2-R. Этот рецептор участвует в запуске каскада воспалительных реакций в полости легких. В качестве лиганда использовались либо моноклональные антитела к этому рецептору, либо природный лиганд - биотинУТФ.
Мышечная дистрофия Дюшена - Болезнь начинает проявляться в детстве, и генная терапия должна проводиться в это же время. Наиболее перспективным является использование аденовирусных векторов. Из-за большой длины гена, исследователи используют укороченные, но функциональные копии белка. ксперименты на мышиных моделях, которые имеют дефектный ген дистрофина, показали, что от 5 до 50% мышечных клеток экспрессировали усеченный белок дистрофин. Этого было достаточно для сведения к минимуму мышечной дегенерации. Существуют данные о клинических испытаниях генетической конструкции, несущей ген дистрофина, для терапии больных мышечной дистрофией Дюшена. Больные дети после инъекции в мышцы такой конструкции приобретали способность двигаться. Однако, эффект был кратковременным.
Многофакторные заболевания на примере онкологических заболеваний:
Рак это, как правило, следствие многоступенчатых изменений клетки. Сложность, связанная с участием множества генов и их продуктов в опухолевом процессе, вызывала сомнения в эффективности генной терапии раковых заболеваний. Однако, существуют многочисленные эксперименты, показывающие, что компенсация единственного гена-супрессора может приводить к подавлению опухолевых свойств клеток.
Иммунотерапия рака:
Использование генотерапевтических конструкций, стимулирующих иммунный (в основном клеточный) противоопухолевый ответ. Для создания ген-конструкций используют гены: Антигенов (на который срабатывает иммунная система); Комплекса MHCI(главный комплекс гистосовместимости); фактора B7; Цитокинов; Рецепторов Т-клеток. Подавление развития опухоли может быть достигнуто клонированием генов цитокинов: интерлейкинов IL-2, IL-4, IL-6, IL-7, IL-12, а также фактора некроза опухолей –α (TNF- α), интерферонов (INF- α, INF-ϒ)
Подавление роста раковых клеток введением в них генов, продукты которых подавляют развитие опухоли:
· Гены-супрессоры опухоли (RB, P53, mdm2, Cip 1, P16, Cyclin D)
· Суицидные гены
· Ингибиторы онкогенов
· Факторы антиангиогенеза
· Ингибиторы циклинов
· Гены, повышающие чувствительность клеток опухоли к лекарственным соединениям
· Гены транспортеров лекарственных соединений (введение, например, в клетки костного мозга)
Колоссальное значение имеет в подавлении онкогенов ген p53(отвечает за апоптоз и способен остановить клеточный цикл, предотвращая бесконтрольное деление), поэтому его мутация практически всегда ведет в злокачественному перерождению клетки. Для внесения рабочей копии гена p53 в организм используются аденовирусные вектора. После начала экспрессии гена p53 в ядре раковой клетки, он индуцирует ее апоптоз.
Другим подходом является подавление работы онкогенов. Мутация в гене RAS способна привести к конститутивной работе сигнальной системы запуска деления (MAP киназный каскад, вспоминаем Николайчика J). Чтобы заблокировать этот ген, можно 1)ингибировать экспрессии RAS введением интактного гена; 2)ингибирование RAS рибозимами; 3)ингибирование нижележащих в сигнальном пути генов; 4)препятствие встраивания RAS белка в мембрану.
Использование онколитических вирусов.Вирусный онколизис — это принципиально новый подход к терапии онкологических заболеваний, основанный на естественной способности вирусов убивать (лизировать) клетки, в которых он размножается. Для этого используются реовирусы, полиовоирусы, эховирусы и вирусы Коксаки + некоторые модифицированные аденовирусы, которые преимущественно размножаются в опухолевых клетках и ведут их к апоптозу. В настоящее время проводятся клинические испытания препарата REOLYSIN, выпускаемого компанией Oncolytic Biotech. Очень перспективными считаются аденовирусы, экспрессирующие антиангиогенные белки.