Недостаточность дыхания
О.С. СЕРГЕЕВ, В.М. СУХОВ, Л.И. УКСУСОВА,
Н.И. ЛЯСКОВСКАЯ, Е.А. ДЕНИСОВА
ЧАСТНАЯ ПАТОФИЗИОЛОГИЯ
ПАТОФИЗИОЛОГИЯ ДЫХАНИЯ
УЧЕБНОЕ ПОСОБИЕ
ДЛЯ СТУДЕНТОВ МЕДИЦИНСКИХ ИНСТИТУТОВ
САМАРА 2003
УДК 612.02
О.С. Сергеев, В.М. Сухов, Л.И. УксусоваН.И. Лясковская, Е.А. Денисова. Патофизиология дыхания. Учебное пособие для студентов медицинских институтов. Самара, 2003, 85 с., Библ. 12, Табл. 4.
В «Учебном пособии» подробно представлены теоретический блок информации, где изложен систематический курс лекций по патофизиологии дыхания и основанные на нем тестовые задания с эталонными ответами на них. Материалы предназначены для студентов медицинского института и университетов медико-биологического профиля, могут быть использованы ординаторами, аспирантами, субординаторами и врачами-гематологами, в том числе для самоконтроля.
Рецензенты: доктор медицинских наук профессор В.В.Симерзин, доктор медицинских наук профессор Ю.А. Осипов.
Рекомендовано к изданию Учебно-методическим отделом СамГМУ
@ Самарский государственный медицинский университет
СОДЕРЖАНИЕ
Предисловие
Введение
ПРЕДИСЛОВИЕ
Учебно-методическое пособие «Патофизиология дыхания» предназначено главным образом студентам второго и третьего курсов медицинского и медико-биологического факультетов, но могут быть полезны ординаторам, субординаторам, врачам-пульмонологам и аспирантам, так как охватывают материал не только теоретического, но и клинического характера.
Основное назначение материалов «Учебного пособия» – помочь студентам, обучающимся, экзаменующимся и занимающимся самостоятельно объективно оценить уровень собственных знаний по патологии внешнего дыхания и гипоксии. В теоретическом блоке можно найти эталоны ответов на 144 тестовых заданий. Среди предложенных в каждом тестовом задании эталонных ответов даются не только положительные и отрицательные, но и ложноотрицательные сведения. Тем не менее, значительная их часть несет правильную информацию, однако, поскольку она запрограммирована в форме вопроса, у читателя всегда возникает некоторая доля сомнения в правильности выбранного им ответа.
Для корректного ответа на поставленные вопросы требуется настойчивая и кропотливая работа, ибо при кажущейся простоте выбрать среди однотипных именно «тот самый ответ» представляется не легкой задачей. Механически же заучить ответы на все тестовые задания в виде буквенных и цифровых выражений практически невозможно. Однако определенный запас теоретических знаний по общим типовым патологическим процессам заметно облегчает поиск правильного ответа и успешное завершение задачи в целом.
Составляя «Учебное пособие», мы исходили из того, что при освоении значительных объемов информации студент или слушатель не всегда может отделить «зерна от плевел», главное от второстепенного. Поэтому методические разработки должны обеспечить глубокое осмысливание знаний, почерпнутых из лекционного курса, учебников и учебных пособий, в том числе из теоретического блока настоящей книги. С этой целью ответы на многие вопросы патофизиологии даны в форме положений, охватывающих различные стороны этиологии и патогенеза патологических процессов в целом и отдельных их сторон.
Итоговая оценка по тестовому контролю определяется по общепринятым в педагогике критериям. «Удовлетворительно» ставится в том случае, если экзаменуемый, отвечая на поставленные вопросы, «набрал» из предложенного стандартного объема ответов более 66% (практически 70%) всей заложенной в них информации. Если этот объем составил менее 66% (практически менее 60%) – «неудовлетворительно», а более 80% – «хорошо» и «отлично» (более 90%).
ВВЕДЕНИЕ
Дыхание – это совокупность физиологических, биофизических и биохимических процессов, в результате которых осуществляется адекватный газообмен между организмом и окружающей средой. Дыхание можно представить в виде 5 этапов:
· внешнее дыхание;
· диффузия газов в легких;
· транспорт газов;
· диффузия газов в тканях;
· тканевое дыхание.
Строгая согласованность всех этапов дыхания обеспечивается функциональной дыхательной системой, в состав которой входят множество гетеро-анатомических образований. Основной функцией системы дыхания является газообмен, благодаря которому поддерживается газовый состав и кислотно-основное равновесие крови. В покое за одну минуту используется 1/6 часть имеющегося в организме кислорода, т.е. 250-280 мл. При больших физических нагрузках потребности в кислороде могут даже превышать имеющийся его резерв. Система внешнего дыхания обладает большими компенсаторными и адаптивными возможностями. Этим объясняется отсутствие в течение длительного времени функциональных изменений легких при хронических воздействиях низкой интенсивности (пыль, курение и т.д.).
Главной целью функциональной системы дыхания является обеспечение адекватного метаболическим потребностям организма газообмена с окружающей средой, выражением чего является постоянство газового гомеостаза. Показателями газового гомеостаза являются рН 7,40, раСО2 40 и раО2 100 мм рт.ст., а также их производные: буферные основания или БО (ВВ) 40-60 ммоль/л, стандартный бикарбонат или СБ (SB) 20-27 ммоль/л и избыток или недостаток буферных оснований (ВЕ) – от -2,5 до +2,5 ммоль/л (или 0). Поэтому эффективность деятельности дыхательной системы зависит от следующих взаимосвязанных механизмов:
· состояние и реактивные свойства дыхательного центра;
· состояние афферентных каналов, влияющих на дыхательный ритмогенез;
· состояние эфферентных каналов, обеспечивающих передачу выходного сигнала из дыхательного центра к дыхательным мышцам;
· активность дыхательных мышц;
· состояние грудной клетки, плевры и плевральной полости;
· пропускная способность воздухоносных путей;
· целостность и эластические свойства легочной ткани;
· диффузионная способность альвеолокапиллярной мембраны;
· состояние капиллярного легочного кровотока – перфузия.
Комплекс этих факторов обеспечивает протекание трех фундаментальных процессов, лежащих в основе нормальной газо-обменной функции легких:
1. Непрерывного обновления воздуха в альвеолах, что поддерживает постоянство его газового состава (альвеолярная вентиляция);
2. Непрерывного капиллярного кровотока через альвеолы в строгом соответствии с объемом вентиляции (перфузия легких);
3. Непрерывной диффузии О2 и СО2 через аэрогематические барьеры с объемной скоростью, достаточной для выравнивания давления и напряжения газов в альвеолярном воздухе и крови, протекающей через легкие (диффузия газов).
НЕДОСТАТОЧНОСТЬ ДЫХАНИЯ
Расстройство газо-обменной функции легких может быть связано с одним из вышеперечисленных процессов в отдельности или с их различной комбинацией и может привести к развитию недостаточности дыхания. Соответственно, выделяют следующие типовые нарушения этой основной функции жизнеобеспечения:
1. Нарушение альвеолярной вентиляции:
а) альвеолярная гиповентиляция;
б) альвеолярная гипервентиляция;
в) неравномерная вентиляция.
2. Нарушение перфузии легких;
3. Нарушение вентиляционно-перфузионных взаимоотношений;
4. Нарушение диффузионной способности легких;
5. Смешанные формы.
Дыхательная недостаточность – это состояние организма, при котором возможности функциональной системы дыхания обеспечить нормальный газовый состав артериальной крови (рН, рСО2 и рО2) ограничены.
Принципы классификации дыхательной недостаточности сложны. Поэтому остановимся только на двух подходах: классификации по этиологии и классификации по патогенезу.
Классификация по этиологии. Дыхательная недостаточность может быть обусловлена самыми различными экзогенными и эндогенными патологическими факторами, которые можно условно разделить на три группы:
1. Первично поражающие легкие (например, пневмония, бронхоспазм и другие).
2. Вторично поражающие легкие (например, респираторный дисстресс-синдром взрослых);
3. Не поражающие легкие (например, дыхательная недостаточность при дефиците кислорода во вдыхаемом воздухе в условиях высокогорья).
Классификация по патогенезу. По патогенезу дыхательную недостаточность можно разделить на две группы:
1. С преимущественным поражением легочных механизмов;
2. С преимущественным поражением внелегочных механизмов.
Рассмотрим более подробно классификацию дыхательной недостаточности по этиологии.
1. Факторы, не поражающие легкие. К ним следует отнести повреждения центральной и периферической нервной системы.
1.Поражения ЦНС – это заболевания головного и спинного мозга. Сюда следует отнести воспалительные процессы (энцефалиты, менингиты, арахноидиты и т.д.), кровоизлияния, травмы, отеки, опухоли, отравления токсическими и лекарственными веществами, врожденные аномалии (например, синдром сонного апноэ – проклятие Ундины), сирингобульбия, лихорадка и гипертермия, метаболические комы. Заболевания спинного мозга: дополнительно к большинству вышеизложенных следует отнести сирингомиелию, полиомиелит, рассеянный склероз, боковой амиотрофический склероз.
2. Заболевания периферической нервной системы: денервация центральных и периферических хеморецепторов (синдром остановки дыхания во сне); повреждение нервов, иннервирующих диафрагму или другие дыхательные мышцы; нарушение передачи импульсов с нерва на мышцу (например, отравление кураре, применение миорелаксантов); невриты, радикулиты, полирадикулоневриты; повышение возбудимости нервно-мышечного аппарата (например, судороги при эпилепсии, столбняке, расстройствах электролитного баланса – К+, Са2+, Mg2+).
3. Нарушения со стороны дыхательных мышц (диафрагмы, межреберных, абдоминальных и вспомогательных мышц): миастения, миотония, миодистрофия, парезы и параличи, травматические повреждения, коллагенозы, миозиты; ограничения подвижности (метеоризм, асцит и т.п.); эпилептический статус; утомление диафрагмы.
4. Нарушение подвижности грудной клетки (врожденные и приобретенные деформации ребер, грудины, грудных позвонков и ключицы); окостенение реберных хрящей; рубцовые изменения костей грудной клетки; сдавление грудной клетки; тучность, наличие опухолей грудной клетки; ограничение подвижности вследствие болевого синдрома.
5. Нарушения со стороны плевральной полости: разгерметизация плевральной полости (пневмоторакс); ограничение подвижности плевральных листков вследствие заполнения плевральной полости жидкостью (гидроторакс, гемоторакс, пиоторакс); ограничение подвижности вследствие наличия рубцовых изменений (шварты и т.п.); опухоли из эпителиальных клеток плевры.
6. Нарушения вследствие поражения верхних дыхательных путей: заболевания носа (риниты, инородные тела), рта (миндалины, аденоиды, западения языка), опухолевый рост, асфиксия, ларингоспазм, отеки, круп при дифтерии и ложный круп, абсцессы.
7. Поражения дистальных дыхательных путей: бронхоспазм и связанное с ним повышенное сопротивление дыханию, бронхиты и бронхиолиты, абсцессы, опухоли, инородные тела, аллергические реакции и действие медиаторов гиперчувствительности немедленного типа холиномиметики.
8. Изменения со стороны крови и кровообращения: анемии, гиповолемии, недостаточность сердца, нарушение сосудистого тонуса, эмболия легочной артерии.
II. Факторы, первично или вторично поражающие легкие. Это либо
1) обструктивные; либо 2) рестриктивные поражения легких.
Патогенез дыхательной недостаточности. Дыхательная недостаточность возникает в связи с нарушениями любого из трех процессов, составляющих газообменную функцию легких:
1. Нарушение альвеолярной вентиляции;
2. Нарушение перфузии, или легочного кровотока;
3. Нарушение диффузии газов через гематоальвеолярный барьер.
Показателями дыхательной недостаточности являются:
1. Нарушения альвеолярной вентиляции;
2. Нарушения газового состава крови;
3. Нарушения диффузионной способности легких;
4. Одышка.
Рассмотрим патогенез отдельных показателей дыхательной недостаточности.
Нарушения газообменной функции легких. В основе нормальной функции газообмена в легких лежат три тесно связанных между собой процесса:
· вентиляция – ритмичное обновление воздуха в альвеолах, за счет которого поддерживается постоянство альвеолярного воздуха;
· перфузия – непрерывный кровоток через альвеолярные капилляры, соответствующий объему вентиляции;
· диффузия – постоянный транспорт кислорода и углекислого газа через альвеолярно-капиллярную мембрану.
Среди типовых нарушений газотранспортной функции легких выделяют:
· нарушения альвеолярной вентиляции – альвеолярные гиповентиляция, гипервентиляция и неравномерная вентиляция;
· нарушения перфузии легких;
· нарушения вентиляционно-перфузионных отношений;
· нарушения диффузионных процессов;
· смешанные формы нарушений.
Нарушения вентиляции. Условием нормальной вентиляции легких является равномерное распределение вдыхаемого воздуха по всем вентилируемым альвеолам при нормальной проходимости воздухоносных путей. Вентиляция альвеол обеспечивает восполнение недостатка кислорода и удаление из альвеол избытка поступающего в них углекислого газа. Вентиляция осуществляется благодаря активному вдоху с участием дыхательной мускулатуры и пассивно-активновному выдоху за счет ретракции грудной клетки и сокращению экспираторной мускулатуры.
Объем легких и дыхательных путей разделяют на альвеолярный объем, где происходит процесс газообмена, и мертвое пространство, которое представляет собой сочетание анатомического (статического) мертвого пространства (в нем газообмен не происходит) и функционального мертвого пространства (часть альвеол, которые в определенный момент времени не вентилируются и/или не перфузируются). В каждом легком взрослого человека насчитывается примерно 3,6×108 альвеол, соответственно, площадь поверхности альвеол составляет 60-90 м2.
На долю анатомического суммарного мертвого пространства у здорового человека в возрасте 25-30 лет приходится примерно 30% дыхательного объема. С возрастом этот показатель увеличивается до 40%. Суммарное мертвое пространство можно определить по следующей формуле:
МП/ДО = (раСО2 -рввСО2)/раСО2I
где: МП – мертвое пространство, ДО – дыхательный объем, раСО2 – напряжение СО2 в артериальной крови, рвСО2 – парциальное давление СО2 в выдыхаемом воздухе.
К анатомическому мертвому пространству относятся воздухоносные пути – рот, нос, глотка, гортань, трахея, бронхи. Нижняя граница анатомического мертвого пространства находится на уровне терминальных бронхиол. У здоровых людей на его долю приходится 0,12-0,18 л.
Функциональное мертвое пространство включает в себя альвеолы, плохо или совсем не перфузируемые, то есть те альвеолы, в которых газообмен невозможен вследствие изменения вентиляционно-перфузионных соотношений.
Любой патологический процесс ведет к увеличению функционального мертвого пространства. При эмболии ветвей легочной артерии различные по размеру участки легких могут быть выключены из процесса газообмена. Уменьшение плотности капиллярной сети также приведет к увеличению функционального мертвого пространства. Существенное увеличение до 60-75% дыхательного объема функционального мертвого пространства наблюдается при пневмосклерозе, хроническом бронхите, бронхиальной астме, эмболии легочной артерии. У больных с выраженной кровопотерей, то есть с уменьшенным объемом циркулирующей крови, функциональное мертвое пространство увеличено, прежде всего, в результате гипервентиляции. Существенно возрастает функциональное мертвое пространство на фоне гипотензии, вызванной ганглиоблокаторами. Объем легких определяется транспульмональным давлением, которое определяется как разность между давлением в альвеолах и внутриплевральным давлением (разность давлений, действующих на внутреннюю и наружную поверхности легких) и имеет отрицательное значение (-2-3 см вод.ст.). На наружную поверхность грудной клетки действует атмосферное давление, которое уравновешивается суммой внутриплеврального давления и давления, создаваемого эластической тягой грудной клетки. Внутриплевральное давление меньше атмосферного на величину эластической тяги грудной клетки, поэтому его часто называют отрицательным, принимая уровень атмосферного давления за ноль. При изменении транспульмонального давления объем легких увеличивается или уменьшается.
Таблица 1
Показатели функционального состояния легких
Обозначения | Показатели | Размерность | Норма |
ДО | Дыхательный объем | л | 0,3-0,9 |
ЧД | Частота дыхания | в мин | 10-16 |
МОД | Минутный объем дыхания | л/мин | 3,2-10,0 |
АВ | Альвеолярная вентиляция | %МОД | 66-80 |
МВД | Максимальная вентиляция легких | л/мин | 50,0-80,0 |
РОвд | Резервный объем вдоха | л | 1,0-2,0 |
РОвыд | Резервный объем выдоха | л | 1,0-1,5 |
ЖЕЛ | Жизненная емкость легких | л | 3,0-5,0 |
ФЖЕЛ1 | Форсированная жизненная емкость легких за первую секунду выдоха | %ЖЕЛ | 70,0-83,0 |
ОЗ | Объем закрытия дыхательных путей | -10%ЖЕЛ | |
ООЛ | Остаточный объем легких | л | 1,0-1,5 |
ФОЕ | Функциональная остаточная емкость | л | 2,0-3,5 |
ОЕЛ | Общая емкость легких | л | 3,5-6,0 |
АМП | Анатомическое мертвое пространство | л | 0,12-0,18 |
ФМП | Функциональное мертвое пространство | л | 0,15 |
ТПД | Транспульмональное давление | см вод.ст. | -2,0-3,0 |
РД | Работа дыхания | гм/мин | 0,15-0,40 |
РЛ | Растяжимость легких | л/см вод.ст. | 0,15-0,35 |
ЛК | Легочный кровоток | л/мин | 3,5-8,0 |
В/П | Вентиляцшнно-перфузионное отношение | 0,7-1,0 | |
ДЛ О2 | Диффузионная способность легких для O2 | мл/мм рт.ст. | 15,0 |
Трансбронхиальное давление определяет ширину просвета дыхательных путей и равно разности между давлением на внутреннюю стенку бронха и внутриплевральным давлением.
В клинике для оценки функционального состояния аппарата внешнего дыхания обследование больных проводят в состоянии относительного покоя, желательно утром натощак, в положении сидя при исключении эмоционального воздействия и, по возможности, действия лекарственных препаратов. Метод спирографии позволяет определить величину статических легочных объемов, состояние бронхиальной проходимости. Правильная трактовка результатов возможна приопределении отношения фактических параметров к должным величинам. Расчет должных величин проводят с учетом возраста, пола, антропометрических показателей (рост, площадь поверхности тела), уровня основного обмена.
Для оценки функционального состояния аппарата внешнего дыхания у взрослых используют следующие показатели (Таблица 1).
Одним из основных показателей вентиляции является МОД, который рассчитывают по формуле:
МОД = ДО×ЧД
Величина МОД широко используется для оценки вентиляции в норме и патологии. Однако одинаковые величины МОД могут быть получены при различных сочетаниях дыхательного объема и частоты дыхания. Понятно, что при одних и тех же значениях МОД для организма эффективным является редкое и глубокое дыхание по сравнению с частым и поверхностным, хотя на поддержание такого МОД тратиться больше энергии (кислорода).
Объем выдыхаемого воздуха после максимально глубокого вдоха представляет собой жизненную емкость легких (ЖЕЛ). ЖЕЛ состоит из резервного объема вдоха, дыхательного объема (ДО) и резервного объема выдоха. Суммарно остаточный объем легких (ООЛ)и ЖЕЛ формируют общую емкость легких (ОЕЛ).
Нарушения альвеолярной вентиляции (гиповентиляция, гипервентиляция, неравномерная вентиляция) возникают в результате внелегочных (нарушения нервной регуляции, повреждения дыхательной мускулатуры, грудной клетки) и легочных (изменения проходимости дыхательных путей и повреждения паренхимы) расстройств.
Показателем вентиляции является МОД, который можно представить в виде суммы показателей альвеолярной вентиляции и вентиляции мертвого пространства. Объем альвеолярной вентиляции не должен составлять менее 66% МОД. Нарушения альвеолярной вентиляции выражаются в виде:
1. Альвеолярной гиповентиляции,
2. Альвеолярной гипервентиляции;
3. Неравномерной вентиляции.
1. Альвеолярная гиповентиляция – это типовая форма нарушения внешнего дыхания, при которой минутный объем вентиляции меньше газо-обменной потребности организма в единицу времени. Последствия гиповентиляции характеризуются увеличением содержания СО2 в альвеолярном воздухе и, соответственно, в артериальной крови(гиперкапния) снижением содержание кислорода в альвеолярном воздухе и артериальной крови (гипоксемия). Обязательным признаком альвеолярной гиповентиляции является респираторный ацидоз. Устранение гипоксемии возможно при дыхании чистым кислородом, однако это не сопровождается адекватной элиминацией СО2, и ацидоз сохраняется. Гиповентиляция при легочной патологии является проявлением истощения резерва аппарата внешнего дыхания вследствие снижения сократительной способности дыхательной мускулатуры и вторичного угнетения дыхательного центра. В основе развития альвеолярной гиповентиляции лежат два основных механизма:
1. Нарушения биомеханики дыхания;
2. Расстройство механизмов регуляции внешнего дыхания.
I. Биомеханика дыхания изучает соотношение давлений в плевральной полости, альвеолах и воздухоносных путях объемам легких, а также скорости движения воздуха, различные типы сопротивления (эластическое, аэродинамическое, инерционное) и работу дыхательной мускулатуры. Нарушения биомеханики дыхания могут быть связаны с поражением дыхательного аппарата на любом уровне и проявляются:
1. Обструктивными;
2. Рестриктивными нарушениями.
А. Обструктивные нарушения могут быть эндо- и экзобронхиального генеза. Гиперсекреция бронхиальных желез, бронхоспазм, отечно-воспалительные изменения слизистой возникают при функциональных нарушениях бронхиол и обычно хорошо поддаются терапии в отличие от обструкции бронхов в результате уменьшения их проходимости на фоне легочной эмфиземы. Возможно нарушение проходимости магистральных дыхательных путей при сдавлении опухолью или загрудинным зобом.
Обструктивный тип расстройств дыхания связан с затруднением проходимости дыхательных путей в связи с увеличением неэластического сопротивления потоку воздуха, что ведет к снижению вентиляции как при физической нагрузке, так и в состоянии покоя. В инспираторную фазу просвет бронхов увеличивается, а в экспираторную – уменьшается до такой степени, что может развиться полное закрытие мелких бронхиол.
Неэластическое сопротивление легких обусловлено тремя компонентами:
· аэродинамическое (вязкостное) сопротивление дыхательных путей возникает из-за перемещения молекул газа и их трения о стенки дыхательных путей;
· фрикционное (деформационное) сопротивление появляется в связи с действием сил трения во время дыхания (при патологических изменениях дыхательных путей и легочной паренхимы фрикционное сопротивление возрастает в несколько раз);
· инерционное сопротивление зависит от массы тела и, особенно, грудной стенки, существует в покое (дыхательная пауза) при дыхании (вдох, выдох).
Общее неэластическое сопротивление зависит от дыхательного объема. У здоровых лиц оно составляет 1,3-3,5 см вод.ст./л/мин. При спокойном вдохе сила дыхательных мышц необходима для преодоление сопротивления эластической тяги легких. При форсированном дыхании резко возрастают силы, направленные на преодоление неэластического сопротивления и расходуемые на преодоление сопротивления току воздуха в трахее и бронхах. Величину неэластического сопротивления определяет состояние воздухоносных путей и скорость потока воздуха. При обструктивных нарушениях сопротивление току воздуха при вдохе и выдохе возрастает (гипертоническая дискинезия). Возможно пролабирование мембранной части трахеи и крупных бронхов и частичная или полная обтурация их просвета (гипотоническая дискинезия). Утрата легкими эластических свойств приводит к спадению мелких бронхов и, соответственно, к увеличению бронхиального сопротивления на выдохе (эмфизема легких).
При тахипноэ скорость воздушного потока увеличивается, происходит завихрение воздуха, увеличивается турбулентный компонент сопротивления, для преодоления которого требуется дополнительное усилие дыхательной мускулатуры. Адекватной альвеолярной вентиляции при этом не происходит, а объемно-временные параметры изменяются.
При повышении сопротивления дыхательных путей увеличивается работа дыхательных мышц, повышаются энергетические затраты и кислородная задолженность дыхательной мускулатуры. Следовательно, компенсаторно-приспособительные возможности аппарата внешнего дыхания ограничиваются.
При хронических неспецифических заболеваниях легких, обструктивной эмфиземе, интерстициальном отеке легких, бронхиолите возникает раннее экспираторное закрытие дыхательных путей. Этот физиологический механизм у здорового человека включается в фазу выдоха, когда объем легких, уменьшается и приближается к остаточному объему легких. Происходит постепенное закрытие дыхательных путей, начиная с нижних отделов легких и захватывая вышерасположенные зоны. Экспираторное закрытие дыхательных путей происходит в том месте, где плевральное давление в какой-то момент выдоха превышает внутрибронхиальное. Согласно правилу Бернулли, сумма давлений, направленных вдоль потока и радиально в стенке бронха, – величина постоянная. По мере увеличения осевого давления при констрикции бронха потеря эластичности бронха и альвеол, растягивающих его, радиально направленное давление становится недостаточным, чтобы предупредить спадение бронха на выдохе.
Заболевания, связанные с обструктивными нарушениями (бронхиальная астма, обструктивный бронхит, эмфизема, частичная или полная обтурация бронхов, воспалительные изменения трахеи, бронхов, сопровождающиеся отеком или гипертрофией слизистой дыхательных путей и другие), встречаются в клинике значительно чаще.
Большое значение в патогенезе обструктивных нарушений имеет гиперреактивность бронхов – выраженная бронхоконстрикция, возникающая в ответ на раздражение. Вещества, обладающие раздражающим действием, проникают в интерстиций, активируют нервные рецепторы, в первую очередь п.vagus, и вызывают бронхоспазм, который устраняется фармакологической блокадой блуждающего нерва. Основой бронхоконстрикции является специфическая (аллергическая) и неспецифическая (неаллергическая) гиперреактивность.
В тканях легких образуются бронхо- и вазоактивные вещества. Эпителий секретирует фактор, обладающий свойствами бронхорелаксации. При бронхоспазме этот фактор в большей степени влияет на тонус гладкой мускулатуры крупных бронхов. Секреция его снижена при повреждении эпителиальных клеток, например, при бронхиальной астме, что способствует стойкой обструкции бронхов. В эндотелии легочных сосудов и эпителии бронхов синтезируется пептид эндотелин-I, проявляющий выраженное бронхоконст-рикторное и вазоконстрикторное действие. Продукция эндотелина-I увеличивается при гипоксии, сердечной недостаточности, бактериемии, хирургических вмешательствах.
Эйкозаноиды, образующиеся при распаде арахидоновой кислоты, оказывают расслабляющее (простагландин Е ) и констрикторное (лейкотриены, ПГ F2α, ТгА2) действие на гладкую мускулатуру, однако суммарно они проявляют бронхоконстрикторный эффект. Кроме того, эйкозаноиды регулируют агрегацию тромбоцитов (стимуляция – ТгА2, угнетение – ПГ I2), повышают проницаемость сосудистой, стенки, вызывают ее дилатацию, усиливают секрецию слизистой, активируют хемотаксис, ингибируют активность натуральных киллеров (липоксин), регулируют высвобождение медиаторов тучной клетки.
Под влиянием метаболитов арахидоновой кислоты возникает дисбаланс адренорецепторов с преобладанием активности α-рецепции над β-рецепцией. В гладкомышечных клетках бронхов снижается содержание цАМФ, замедляется элиминация ионов Са2+ из клеточной цитоплазмы, что и поддерживает бронхоконстрикцию. Ионы Са2+ активируют фосфолипазу А2, определяющую метаболизм арахидоновой кислоты. Формируется «порочный круг», поддерживающий бронхоконстрикцию.
Б. Рестриктивные нарушения связаны с пульмональными и экстрапульмональными расстройствами. Эти процессы, как правило, не затрагивают дыхательные пути и, соответственно, не влияют на аэродинамические процессы в них.
Уменьшение воздушного альвеолярного пространства и ограничение растяжимости легких может быть следствием гемоторакса и пневмоторакса, экссудата в плевральной полости, плевральных шварт, пневмофиброза, ателектаза, обширной пневмонии, кисты легкого, тугоподвижности костно-суставного аппарата грудной клетки или ее деформации (кифосколиоз, болезнь Бехтерева).
Основой рестриктивных нарушений является повреждение белков интерстиция под действием ферментов (эластаза, коллагеназа и другие). В состав интерстиция входят коллаген (60-70%), эластин (25-30%), гликозаминогликаны (1%), фибронектин (0,5%). Фибриллярные белки обеспечивают стабильность каркаса легких, его эластичность и растяжимость, создают оптимальные условия для выполнения основной газообменной функции. Структурные изменения белков интерстиция проявляются снижением растяжимости легочной паренхимы и повышением эластического сопротивления легочной ткани. При развитии эмфиземы нарушается равновесие синтеза и распада эластина, так как имеющийся избыток протеаз не уравновешивается ингибиторами протеолитических ферментов. Наибольшее значение имеет дефицит α1-антитрипсина.
Сопротивление, которое приходится преодолевать дыхательным мышцам во время вдоха, может быть эластическим и не эластическим. Эластическая сила легких направлена на сокращение объема легких. Это величина, обратная растяжимости. Примерно 2/3 эластической силы легких зависит от поверхностного натяжения стенок альвеол. Эластическая сила легких численно равна транспульмональному давлению. На вдохе транспульмональное давление увеличивается, и растет объем легких. В зависимости от фазы дыхания имеются определенные колебания внутриплеврального давления:
· конец спокойного выдоха – 2-5 см вод.ст.
· конец спокойного вдоха – 4-8 см вод.ст.
· высота максимального вдоха – 20 см вод.ст.
Растяжимость легких (податливость легких, легочный комплайнс) – величина, характеризующая изменения объема легких на единицу транспульмонального давления. Растяжимость – величина, обратно пропорциональная эластичности. Основным фактором, определяющим предел максимального вдоха, является растяжимость. По мере углубления вдоха растяжимость легких прогрессивно уменьшается, а эластическое сопротивление становится наибольшим. Поэтому главным фактором, определяющим предел максимального выдоха, является эластическое сопротивление легких.
Отклонение транспульмонального давления на 1 см вод.ст. проявляется изменением объема легких на 150-350 мл. Работа по преодолению эластического сопротивления пропорциональна дыхательному объему, то есть растяжимость легких на вдохе тем больше, чем большая работа при этом совершается. Затруднения расправления легочной ткани определяют степень гиповентиляционных нарушений.
Различают статический и динамический легочный комплайнс. Статический комплайнс позволяет оценить эластическое сопротивление легочной ткани. Динамический комплайнс определяет также неравномерность изменения растяжимости и бронхиального сопротивления в отдельных зонах легких. Оба типа растяжимости характеризуются отношением объем/давление. Разница между ними существует из-за отсутствия соответствия регионарной растяжимости ткани легкого и скорости наполнения отдельных легочных зон в связи с различиями аэродинамического и тканевого вязкостного сопротивления.
Статическая легочная растяжимость (статический комплайнс) измеряется при задержке дыхания, когда ток воздуха прекращен, и происходит выравнивание регионарных различий эластичности легких. Оценку растяжимости проводят с помощью внутрипище-водного зонда путем измерения внутрипищеводного давления, которое соответствует внутриплевральному давлению. Величину растяжимости вычисляют как отношение разности легочных объемов на высоте вдоха и выдоха к разности транспульмонального давления в эти же моменты. Нормальные значения статического комплайнса в среднем составляют у мужчин 200, у женщин 170 мл/см вод.ст.
Динамическую легочную растяжимость (динамический комплайнс) оценивают без перекрытия воздушного потока при частоте дыхания 20 и 60 в минуту. Динамический комплайнс обратно пропорционален частоте дыхания, т.е. с увеличением частоты дыхания комплайнс уменьшается, причем в большей степени там, где более значительны нарушения распределения газов в легких. Чем больше неравномерность механических свойств легких, тем меньше динамический комплайнс, и по мере учащения дыхания снижение нарастает. У здоровых людей при высокой частоте дыхания динамический комплайнс снижается на 20%. Более выраженные отклонения свидетельствуют о неоднородности механических свойств легких.
Величину динамической растяжимости легочной ткани рассчитывают как отношение объема одного дыхательного цикла в конце вдоха и в конце выдоха, то есть в моменты, когда в воздухоносных путях нет потока, и транспульмональное давление равно его эластической составляющей.
В физиологических условиях существенной разницы показателей статической и динамической растяжимости не определяется. Величина комплайнса зависит от объема и направления предшествующих изменений и от гомогенности лёгкого. Величина растяжимости определяется:
· Состоянием системы сурфактанта;
· Упругими свойствами стенок альвеол;
· Тонусом гладкой мускулатуры воздухоносных путей (гладкие мышцы иннервируются симпатической (расслабление) и парасимпатической (сокращение) нервной системой.