Транспорт вещества через биологические мембраны

Классификация.Различают прямой и опосредованный транспорт. Прямой — без учас­тия переносчиков, опосредованный — с их участием. Например, перенос глюкозы с участи­ем переносчика.

Опосредованный транспорт осуществляется с затратой энергии (активный транспорт) или без затраты энергии (облегченная диффузия). Прямой транспорт всегда идет по типу пассивного транспорта.

Из сказанного ясшо, что второй вариант классификации — это выделение двух основных видов транспорта веществ — пассивного и активного.

Третий вариант классификации — транспорт с изменением архитектуры мембраны (эк-зоцитоз, эндоцитоз) или без изменения структуры мембраны (все остальные виды транс­порта).

Четвертый вариант классификации — это транспорт, сопряженный с переносом двух веществ (котранспорт), который может протекать по типу симлорта (два вещества идут в одном направлении — например Na + глюкоза) или по типу антипорта (одно вещество идет в клетку, второе — из клетки или наоборот — Na и К).

Антипод котранспорта — обычный транспорт, или унипорт, т. е. когда переносится одно вещество, например, молекулы глюкозы.

Пассивный транспорт.Различают два его вида — простую диффузию и облегченную диффузию. Простая диффузия идет в соответствии с законом Фика — по химическому или электрохимическому градиенту. Например, в клетке натрия 14 ммоль, а в среде — 140 ммоль, в этом случае пассивный поток должен быть направлен в клетку. В живых системах

этот вид транспорта используется ограниченно. Кислород, углекислый газ, вода—они могут таким образом осуществлять переход из клетки в среду или наоборот. Важно, что для пас­сивной простой диффузии вещество должно быть жирорастворимым. Гидрофильные веще­ства пройти в фосфолипидном слое мембраны не могут. В целом, затраты энергии на этот процесс не происходит, так как диффузия идет по градиенту.

Облегченная диффузия проходит по двум вариантам — с участием переносчиков или при наличии специализированных каналов. Обнаружено, что в мембранах, имеются специ­альные белки-переносчики, которые, специфически связываясь с переносимой молекулой, способствуют ее переносу по градиенту концентрации. Таким образом, затраты энергии не происходит, а путь через мембрану облегчается за счет наличия специфического перенос­чика. Специфичность проявляется, например, в том, что D-изомеры Сахаров транспортиру­ются таким образом, а L-изомеры нет, или L-аминокислоты транспортируются, а D-амино-кислоты нет.



Рис. 1. Схема строения мембранывозбудимой ткани. 1 — слой билипидоа и каналы для ионов Na; 2 — канал для ионов Na а закрытом состоянии; 3 — «ворота» открыты; 4 — «ворота» инактивации закрыты; 5 — селективный фильтр.

транспорт вещества через биологические мембраны - student2.ru Ионные каналы — это интегральные белки мем­браны, которые выполня­ют функцию транспорти­рующей частицы для соот-ветствующего иона. Се­лективность канала обес­печивается за счет геоме­трии канала (диаметр ус­тьев, диаметр селективно­го фильтра), за счет внут-риканально расположен­ных заряженных частиц (например, для катион-пропускающих каналов — анионные частицы). Каж­дый ионный канал имеет устье, селективный фильтр, ворота и меха­низм управления ворота­ми. Часть каналов управляется за счет разности потенциалов на мембране (потенциал-за­висимые ионные каналы) — для этого рядом с каналом имеется электрический сенсор, ко­торый в зависимости от величины мембранного потенциала либо открывает ворота кана­лов, либо держит их закрытыми. Второй вариант ионных каналов — рецепторуправляемые каналы: в этом случае ворота каналов управляются за счет рецептора, расположенного на поверхности мембраны: при взаимодействии медиатора (лиганда) с этим рецептором мо­жет происходить открытие ионных каналов. В некоторых рецепторуправляемых каналах между рецептором и воротным механизмом имеется промежуточная стадия (посредник типа цАМФ, протеинкиназы и т. п.)-

Селективность ионных каналов во многом определяется геометрией канала. Например, кристаллический диаметр иона натрия — 0,19 нм, вместе с гидратной оболочкой его диа­метр становится около 0,3 нм. Устье канала 0,3—0,5 нм. Для того, чтобы пройти через канал (главное — через селективный фильтр), ион натрия или другой ион должен освобо­диться от гидратной оболочки и только в «голом» виде может пройти через канал. Слиш­ком большой ион не может войти в канал, слишком маленький не способен отдать гидрат-ную оболочку в селективном фильтре, поэтому не может выскочить из канала.

Натриевые каналы имеют устья, селективный фильтр, воротный механизм. Ворота у них двух типов — актнвацнонные (м-ворота) и ннактивационные (h-ворота). В условиях покоя (МП=80 мВ, например), активационные ворота закрыты, но готовы в любую минуту

открыться, а ннактивационные ворота открыты. При снижении МП (например, до 60 мВ) активационные ворота открываются и впускают ионы натрия в клетку, но вскоре начинают закрываться инактивационные ворота (происходит инактивация натриевых каналов). Неко­торое время спустя закрываются активационные ворота, открываются инактивационные ворота, и канал готов к новому циклу. Канал блокируется тетродотоксином, местными ане­стетиками (новокаином, другими веществами). Это используется в медицинской практике.

Калиевые каналы тоже достаточно селективны — в основном пропускают ионы калия. Они блокируются тетраэтиламмонием. Процессы инактивации у них выражены слабо.

Кальциевые каналы — имеют все атрибуты ионного канала (устья, воротный механизм, фильтр). Блокируются ионами марганца, никеля, кадмия (двухвалентные ионы), а также лекарственными веществами — верапамилом, нифедипином, дильтиаземом, которые ис­пользуются в клинической практике.

Активный транспорт: различают первично-активный транспорт, при котором энергия затрачивается на перенос данного вещества против градиента его концентрации, а также вторично-активный транспорт, при котором энергия на перенос данного вещества (напри­мер, молекулы глюкозы) используется за счет механизма переноса другого вещества (на­пример, натрия).

Первично-активный транспорт широко представлен в организме. Это калий-натриевый насос, натрий-водородный обменный механизм, натрий-кальциевый обменный механизм, кальциевый насос и т. д. Суть его состоит в том, что в мембране имеется переносчик, обла­дающий АТФ-азной активностью, т. е. он способен расщеплять АТФ и высвобождать энер­гию, которая и затрачивается на перенос вещества. Конкретно: калий-натриевый насос «вы­качивает» из клетки ионы натрия, а «вкачивает» ионы калия (против градиента концентра­ции). Чтобы осуществить перенос натрия из клетки в среду, переносчик (калий-натриевая АТФ-аза) внутри клетки соединяется с ионами натрия, в результате активируется АТФ-аз-ная активность переносчика, происходит гидролиз АТФ, это вызывает высвобождение энер­гии, в результате *— переносчик каким-то образом (типа качели?) переносит натрий в среду. Здесь он теряет сродство к натрию» но приобретает сродство к кадию а присоединяет его ионы. В результате — меняется конформация переносчика, и он (каким-то образом?) вновь возвращается к внутренней поверхности мембраны, внося в клетку ионы калия. Здесь вновь он теряет сродство к ионам калия, но приобретает сродство к ионам, натрия, и цикл повто­ряется. Насос ингибируется уабаином (строфантин G). Конкретные механизмы работы на­соса еще во многом не ясны.

Вторично-активный транспорт. В основном представлен в энтероцитах, в эпителии по­чек. Суть его состоит в следующем (на примере переноса молекулы глюкозы). Молекула глюкозы должна войти в клетку, где ее концентрация намного выше, чем в среде. Для того, чтобы это произошло, необходимы затраты энергии. Но тратится энергия, которая ранее была затрачена на перенос натрия. Дело в том, что в этой клетке создаются за счет работы калий-натриевого насоса низкие концентрации натрия. При наличии высоких концентра­ций натрия в среде — натрий будет стремиться войти в клетку (по градиенту). Итак, моле­кула глюкозы присоединяется к специфическому переносчику, к которому подсоединяется ион натрия. В результате градиента концентрации (для натрия) этот «комбайн» (перенос­чик + глюкоза + ион натрия) переносится внутрь клетки, где глюкоза и натрий отщепляют­ся от переносчика, а переносчик «уходит» вновь совершать свою работу. Натрий откачива­ется помпой, а глюкоза покидает клетку с другой стороны уже по градиенту концентрации (облегченная диффузия по типу «перенос с участием переносчика»).

В целом, представленные примеры демонстрируют наличие в живых системах котранс-порта, когда одним механизмом транспортируется одновременно две молекулы. В случае калий-натриевого насоса имеет место антипорт (калий идет в одну сторону, натрий в про­тивоположную), в случае вторично-активного транспорта имеет место симпорт.

Эндоцитоз и экэоцитоз. Это варианты транспорта, при которых меняется архитектура мем­бран. Он осуществляется с затратой энергии. Эндоцитоз — это введение крупномолекуляр-

ных частиц из среды в клетку. Один его вариант — фагоцитоз, другой ~ пиноцитоз. Пиноци-тоз представляет собой способ усвоения клеткой белковой молекулы без се предварительно­го гидролиза. Такой механизм, например, имеет место у новорожденных, которые с молоком матери получают антитела (иммуноглобулины), через эитероциты попадающие в организм ребенка, будучи совершенно ненарушенными и способными к выполнению своих функций.

Экзоцитоз — это выделение крупных молекул из клетки. Пример тому — выделение квантов медиатора из везикулы в синапсе.

Наши рекомендации