Транспорт вещества через биологические мембраны
Классификация.Различают прямой и опосредованный транспорт. Прямой — без участия переносчиков, опосредованный — с их участием. Например, перенос глюкозы с участием переносчика.
Опосредованный транспорт осуществляется с затратой энергии (активный транспорт) или без затраты энергии (облегченная диффузия). Прямой транспорт всегда идет по типу пассивного транспорта.
Из сказанного ясшо, что второй вариант классификации — это выделение двух основных видов транспорта веществ — пассивного и активного.
Третий вариант классификации — транспорт с изменением архитектуры мембраны (эк-зоцитоз, эндоцитоз) или без изменения структуры мембраны (все остальные виды транспорта).
Четвертый вариант классификации — это транспорт, сопряженный с переносом двух веществ (котранспорт), который может протекать по типу симлорта (два вещества идут в одном направлении — например Na + глюкоза) или по типу антипорта (одно вещество идет в клетку, второе — из клетки или наоборот — Na и К).
Антипод котранспорта — обычный транспорт, или унипорт, т. е. когда переносится одно вещество, например, молекулы глюкозы.
Пассивный транспорт.Различают два его вида — простую диффузию и облегченную диффузию. Простая диффузия идет в соответствии с законом Фика — по химическому или электрохимическому градиенту. Например, в клетке натрия 14 ммоль, а в среде — 140 ммоль, в этом случае пассивный поток должен быть направлен в клетку. В живых системах
этот вид транспорта используется ограниченно. Кислород, углекислый газ, вода—они могут таким образом осуществлять переход из клетки в среду или наоборот. Важно, что для пассивной простой диффузии вещество должно быть жирорастворимым. Гидрофильные вещества пройти в фосфолипидном слое мембраны не могут. В целом, затраты энергии на этот процесс не происходит, так как диффузия идет по градиенту.
Облегченная диффузия проходит по двум вариантам — с участием переносчиков или при наличии специализированных каналов. Обнаружено, что в мембранах, имеются специальные белки-переносчики, которые, специфически связываясь с переносимой молекулой, способствуют ее переносу по градиенту концентрации. Таким образом, затраты энергии не происходит, а путь через мембрану облегчается за счет наличия специфического переносчика. Специфичность проявляется, например, в том, что D-изомеры Сахаров транспортируются таким образом, а L-изомеры нет, или L-аминокислоты транспортируются, а D-амино-кислоты нет.
Рис. 1. Схема строения мембранывозбудимой ткани. 1 — слой билипидоа и каналы для ионов Na; 2 — канал для ионов Na а закрытом состоянии; 3 — «ворота» открыты; 4 — «ворота» инактивации закрыты; 5 — селективный фильтр. |
Ионные каналы — это интегральные белки мембраны, которые выполняют функцию транспортирующей частицы для соот-ветствующего иона. Селективность канала обеспечивается за счет геометрии канала (диаметр устьев, диаметр селективного фильтра), за счет внут-риканально расположенных заряженных частиц (например, для катион-пропускающих каналов — анионные частицы). Каждый ионный канал имеет устье, селективный фильтр, ворота и механизм управления воротами. Часть каналов управляется за счет разности потенциалов на мембране (потенциал-зависимые ионные каналы) — для этого рядом с каналом имеется электрический сенсор, который в зависимости от величины мембранного потенциала либо открывает ворота каналов, либо держит их закрытыми. Второй вариант ионных каналов — рецепторуправляемые каналы: в этом случае ворота каналов управляются за счет рецептора, расположенного на поверхности мембраны: при взаимодействии медиатора (лиганда) с этим рецептором может происходить открытие ионных каналов. В некоторых рецепторуправляемых каналах между рецептором и воротным механизмом имеется промежуточная стадия (посредник типа цАМФ, протеинкиназы и т. п.)-
Селективность ионных каналов во многом определяется геометрией канала. Например, кристаллический диаметр иона натрия — 0,19 нм, вместе с гидратной оболочкой его диаметр становится около 0,3 нм. Устье канала 0,3—0,5 нм. Для того, чтобы пройти через канал (главное — через селективный фильтр), ион натрия или другой ион должен освободиться от гидратной оболочки и только в «голом» виде может пройти через канал. Слишком большой ион не может войти в канал, слишком маленький не способен отдать гидрат-ную оболочку в селективном фильтре, поэтому не может выскочить из канала.
Натриевые каналы имеют устья, селективный фильтр, воротный механизм. Ворота у них двух типов — актнвацнонные (м-ворота) и ннактивационные (h-ворота). В условиях покоя (МП=80 мВ, например), активационные ворота закрыты, но готовы в любую минуту
открыться, а ннактивационные ворота открыты. При снижении МП (например, до 60 мВ) активационные ворота открываются и впускают ионы натрия в клетку, но вскоре начинают закрываться инактивационные ворота (происходит инактивация натриевых каналов). Некоторое время спустя закрываются активационные ворота, открываются инактивационные ворота, и канал готов к новому циклу. Канал блокируется тетродотоксином, местными анестетиками (новокаином, другими веществами). Это используется в медицинской практике.
Калиевые каналы тоже достаточно селективны — в основном пропускают ионы калия. Они блокируются тетраэтиламмонием. Процессы инактивации у них выражены слабо.
Кальциевые каналы — имеют все атрибуты ионного канала (устья, воротный механизм, фильтр). Блокируются ионами марганца, никеля, кадмия (двухвалентные ионы), а также лекарственными веществами — верапамилом, нифедипином, дильтиаземом, которые используются в клинической практике.
Активный транспорт: различают первично-активный транспорт, при котором энергия затрачивается на перенос данного вещества против градиента его концентрации, а также вторично-активный транспорт, при котором энергия на перенос данного вещества (например, молекулы глюкозы) используется за счет механизма переноса другого вещества (например, натрия).
Первично-активный транспорт широко представлен в организме. Это калий-натриевый насос, натрий-водородный обменный механизм, натрий-кальциевый обменный механизм, кальциевый насос и т. д. Суть его состоит в том, что в мембране имеется переносчик, обладающий АТФ-азной активностью, т. е. он способен расщеплять АТФ и высвобождать энергию, которая и затрачивается на перенос вещества. Конкретно: калий-натриевый насос «выкачивает» из клетки ионы натрия, а «вкачивает» ионы калия (против градиента концентрации). Чтобы осуществить перенос натрия из клетки в среду, переносчик (калий-натриевая АТФ-аза) внутри клетки соединяется с ионами натрия, в результате активируется АТФ-аз-ная активность переносчика, происходит гидролиз АТФ, это вызывает высвобождение энергии, в результате *— переносчик каким-то образом (типа качели?) переносит натрий в среду. Здесь он теряет сродство к натрию» но приобретает сродство к кадию а присоединяет его ионы. В результате — меняется конформация переносчика, и он (каким-то образом?) вновь возвращается к внутренней поверхности мембраны, внося в клетку ионы калия. Здесь вновь он теряет сродство к ионам калия, но приобретает сродство к ионам, натрия, и цикл повторяется. Насос ингибируется уабаином (строфантин G). Конкретные механизмы работы насоса еще во многом не ясны.
Вторично-активный транспорт. В основном представлен в энтероцитах, в эпителии почек. Суть его состоит в следующем (на примере переноса молекулы глюкозы). Молекула глюкозы должна войти в клетку, где ее концентрация намного выше, чем в среде. Для того, чтобы это произошло, необходимы затраты энергии. Но тратится энергия, которая ранее была затрачена на перенос натрия. Дело в том, что в этой клетке создаются за счет работы калий-натриевого насоса низкие концентрации натрия. При наличии высоких концентраций натрия в среде — натрий будет стремиться войти в клетку (по градиенту). Итак, молекула глюкозы присоединяется к специфическому переносчику, к которому подсоединяется ион натрия. В результате градиента концентрации (для натрия) этот «комбайн» (переносчик + глюкоза + ион натрия) переносится внутрь клетки, где глюкоза и натрий отщепляются от переносчика, а переносчик «уходит» вновь совершать свою работу. Натрий откачивается помпой, а глюкоза покидает клетку с другой стороны уже по градиенту концентрации (облегченная диффузия по типу «перенос с участием переносчика»).
В целом, представленные примеры демонстрируют наличие в живых системах котранс-порта, когда одним механизмом транспортируется одновременно две молекулы. В случае калий-натриевого насоса имеет место антипорт (калий идет в одну сторону, натрий в противоположную), в случае вторично-активного транспорта имеет место симпорт.
Эндоцитоз и экэоцитоз. Это варианты транспорта, при которых меняется архитектура мембран. Он осуществляется с затратой энергии. Эндоцитоз — это введение крупномолекуляр-
ных частиц из среды в клетку. Один его вариант — фагоцитоз, другой ~ пиноцитоз. Пиноци-тоз представляет собой способ усвоения клеткой белковой молекулы без се предварительного гидролиза. Такой механизм, например, имеет место у новорожденных, которые с молоком матери получают антитела (иммуноглобулины), через эитероциты попадающие в организм ребенка, будучи совершенно ненарушенными и способными к выполнению своих функций.
Экзоцитоз — это выделение крупных молекул из клетки. Пример тому — выделение квантов медиатора из везикулы в синапсе.