Играли гены, контролирующие ее развитие
Одно из важных открытий молекулярной генетики последних лет состоит в том, что не все гены организма, по-видимому, имели одинаковое значение в механизмах эволюции. Наиболее существенную роль в эволюции органов, в том числе и нервной системы, вероятно, играли те же самые гены, которые контролируют и критические стороны развития этих структур (см. гл. 19). В терминах разделения генов на «селекторные», регулирующие развитие, и «реализаторные», которые в конечном счете обеспечивают построение структур (Tautz, 1996), это в первую очередь «селекторные» гены. Часто эти гены кодируют транскрипционные факторы — белки, регулирующие экспрессию других генов. Типичным примером могут служить гомеобоксные гены.
Гомеобоксные гены кодируют транскрипционные факторы, содержащие консервативный ДНК-связывающий участок из 180 аминокислот и выполняющие разнообразные функции в ходе развития. Они широко представлены у всех эукариот, но претерпели обширную радиацию у ранних многоклеточных, превратившись в ряд гомеобоксных семейств, общих для многих классов многоклеточных. У большинства животных гомеобоксные гены определяют развитие структур вдоль передне-задней оси тела. На ДНК эти гены сгруппированы в комплексы, и позиция генов внутри комплекса коррелирует со временем их экспрессии в развитии и зоной экспрессии вдоль оси тела.
К числу таких гомеобоксных генов относятся гены, входящие в состав комплекса antennapedia-bithorax, — регуляторные гены, контролирующие развитие структур вдоль переднезадней оси у дрозофилы (рис. 20.1).
Рис. 20.1. Нарушения развития при мутациях гомеобоксных генов:
А — нормальная дрозофила, имеющая одну пару крыльев (развивающихся из сегмента Т2), и дрозофила мутантная по гомеобоксному гену Ultrabithorax, развивающаяся с двумя парами крыльев (из сегментов Т2 и ТЗ); Б — мутация гомеобоксного гена Antennapedia у дрозофилы, вызывающая развитие конечностей на месте антенн
Однако гомологи этих генов у позвоночных, известные как гены семейства Нох, экспрессируются преимущественно в перекрывающихся доменах спинного и головного мозга (рис. 20.2). Их экспрессия обнаруживается в эмбриональном мозге мышей и человека и имеет выраженную приуроченность к морфологическим сегментам нервной системы. Мутации в определенных Нох генах ведут к нарушениям развития или полному отсутствию соответствующих ромбомер-специфичных нервных структур (Akam, 1995; Double, Morata, 1994; Kramlauf et al., 1993).
Рис. 20.2. Роль гомеобокспых генов в формировании мозга позвоночных в эмбриогенезе
(A) — Сагиттальный срез мышиного эмбриона. 8 ромбомеров обозначены rl-r8; III-XII — черепные двигательные нервы; V, VII, IX нервы выходят из заднего мозга через ромбомеры г2, г4 и r6; sc. — спинной мозг; m— средний мозг; d — промежуточный мозг; t — передний мозг.
(B) — Схематическая иллюстрация областей экспрессии генов семейства Нох-2, Кгох-20 и int-2 (гомолога FGF) в соотношении с локализацией ромбомеров rl—т8.
(C) — Комплекс генов Нох-2 мыши имеет сходную организацию с комплексом гомеобокспых генов Bithorax у дрозофилы
Какую главную проблему рождают эти и другие сходные исследования в быстро развивающейся области эволюционной молекулярной генетики развития? Демонстрируя молекулярное взаимопроникновение механизмов развития и эволюции, они поднимают критический вопрос о принципах преемственности и смены функций генов в условиях эволюционно усложняющейся морфологической организации.
Решение этого вопроса критически зависит от понимания функций генов в процессах естественного отбора.
Проблема нейроэволюции
Связывает биологию с
Психологией
Естественный отбор, действующий на гетерогенные по составу популяции организмов, приводит к дифференциальному размножению тех особей, которые имеют преимущества по тем или иным показателям приспособленности, измененная отбором популяция имеет и измененные пропорции генов, которые были связаны с признаками, попавшими под действие естественного отбора. В связи с этим, для анализа процессов эволюции в современной эволюционной биологии используют показатель относительного изменения частот генов в популяции. Однако естественный отбор не действует непосредственно на уровне генов. Он происходит на уровне целостных организмов (фенотипов) и их взаимоотношений со средой. Именно в ходе естественного отбора, который действует на функции и структуры, увеличивающие выживаемость или размножение, происходят популяционные изменения частот генов, связанных с этими функциональными системами. Поэтому для понимания механизмов эволюционных преобразований функций генов необходим свод «трансформационных правил», который бы связывал изменения в «пространстве генотипов» с изменениями в «пространстве фенотипов».
С помощью ясного графического анализа известный генетик Р. Левонтин продемонстрировал, что для соотнесения изменения частот генов с реальным процессом естественного отбора требуется набор из четырех таких трансформационных правил (рис. 20.3). Первое (Т1) связывает зиготы (G1), через процессы эмбрионального развития, с теми признаками организма, которые несут селективные преимущества. Второе (Т2) определяет преобразования зрелых фенотипов на протяжении индивидуальной жизни и связано с экологическими взаимодействиями в процессе борьбы за существование, спаривания и естественного отбора. Третье (Т3) соотносит фенотипы с образованием половых клеток, законами рекомбинации и другими зависимостями, проецирующими фенотипы на генотипы. Наконец, четвертое (Т4) описывает формирование новых зигот (G4) и определяется правилами сортировки генов, такими как законы Менделя и закон Харди-Вайнберга, позволяющими, исходя из родительских генотипов, предсказывать генотипы следующего поколения. Таким образом, данный набор правил трансформации образует своеобразный «эволюционный цикл». Для нас в этом цикле особенно важны две фазы — Т1 и Т4. На первой из них происходит развитие функциональных структур организма, обеспечивающих выживание и размножение, а на второй — использование этих структур в ходе естественного отбора. У организмов с высокоразвитой нервной системой фаза Т2 тесно связана с механизмами адаптивной модификации сложившихся в развитии функциональных систем или формирования новых, то есть с процес- сами индивидуального обучения (см. гл. 15) и системогенеза новых поведенческих актов (см. гл. 14). Где-то в роли этих процессов в естественном отборе и следует искать решение проблемы нейроэволюции — ответ на вопрос, почему в нервной системе наблюдалась такая концентрация эволюционных генетических изменений?
Рис. 20.3. Схема путей преобразования генотипа популяции от поколения к поколению [Левонтин, 1978]. Схема показывает, как процессы естественного отбора могут быть связаны с изменением частот генов в популяции. Результаты эволюции проявляются в изменениях пространства генотипов, однако средством эволюционных изменений служат процессы естественного отбора, протекающие в пространстве фенотипов. Вертикальные линии представляют правила трансформации, необходимые для того, чтобы связать гены с развитием и поведением. Tt обозначает развитие; Г2 обозначает поведение и модификации взрослого организма в условиях отбора; Т3 представляет формирование гамет; Tt представляет формирование оплодотворенной яйцеклетки, готовой к вступлению в следующий эволюционный цикл
Особенность анализа этой проблемы в терминах эволюционного цикла состоит в том, что он помещает ее в контекст более широкого круга биологических вопросов. Действительно, любой орган и его функции, возникшие в ходе биологической эволюции, должны были создаваться внутри этого цикла. Поэтому, чтобы понять психику как функцию определенной динамической организации структур мозга и тела, следует понять, как эти структуры и их организация возникли в ходе биологической эволюции. Это составляет часть проблемы морфологической эволюции — одной из центральных нерешенных проблем современной биологии. Ее решение, в свою очередь, требует теории эволюции эмбрионального развития, теории, описывающей процессы генерации новых структур в организме. Наконец, решение этой проблемы не может быть полным, если не включить в нее описание механизмов отбора этих структур соматическим и естественным отбором в процессах, определяемых поведением и психикой.
Следовательно, мы оказываемся в своего рода «циркулярной ловушке», выход из которой возможен только при совокупном решении всех составляющих ее вопросов. Вследствие этого, проблема происхождения и адаптивных функций психики и проблема нейроэволюции перестают быть предметом только психологии и наук о мозге. Для решения проблемы нейроэволюции требуется единая теория, связывающая эмбриологию, морфологию, физиологию и психологию. Исследования, учитывающие факт нейроэволюции, обязаны показать, как поведение и опыт вписывают новую морфологию, возникающую при генетически измененном развитии мозга, в процессы адаптации, оцениваемые на весах естественного отбора. Они должны также ответить на вопрос, как две фазы эволюционного цикла — обучение и развитие — связаны с генами и регуляцией их экспрессии в мозге.
В следующих разделах мы рассмотрим некоторый материал, накапливающийся для решения этой проблемы.