Суммарное выражение хода фотосинтеза, доказательство роли воды в продукции кислорода.

6С02 + 12Н20 à С6Н1206 + 602 + 6Н20. Суммарное уравнение фотосинтеза в свое время предложил Ж-Б. Буссенго. Этот процесс В. Пфеффер в 1887 году назвал фотосинтезом. Суммарное выражение фотосинтеза отражает суть процесса, который сводится к тому, что на свету в зеленом растении из очень окисленных веществ – углекислого газа и воды – синтезируются органические вещества и выделяется молекулярный О2.. У высших растений световая энергия расходуется на разложение воды. Убедится в том, что мысль верна смогли тогда, когда биохимики начали использовать для изучения фотосинтеза Н2О или СО2, меченные тяжелыми изотопами кислорода (18О). В этих опытах было показано, что выделяющийся О2 всегда соответствует по своему изотопному состоянию кислороду, который содержится в воде, а не а СО2. Вообще, фотолиз воды – это ключ ко всему процессу фотосинтеза, так как на этом этапе световая энергия используется для выполнения химической работы. В молекуле кислорода, выделяемой при фотосинтезе у высших растений, содержится два атома О, а в молекуле воды – только один, а это значит, что в реакции должны участвовать две молекулы воды. Чтобы получить сбалансированное уравнение, которое бы правильно отражало механизм суммарной реакции, мы должны ввести в обе части этого уравнения еще по одной молекуле воды. Когда вода будет содержать 18О, то мы получим: С02+ Н2180 à(СН20) + 1802+ Н20. Если мы пометили при помощи 18О СО2, тогда уравнение принимает следующий вид: С18О2+20 à (CH218О) + О2+ Н2180. Выделяемый при фотосинтезе кислород образуется из вступающей в реакцию воды, образующиеся же молекулы воды, отличаются от тех двух молекул, которые принимают участие в фотосинтезе. Суммарное выражение фотосинтеза сыграло большую роль в развитии физиологии растений. Оно помогло ученым определить место фотосинтеза в жизни самих растений и существовании жизни на всей планете. Фотосинтез имеет большое значение и для самого растения. Образование органов, их рост тесно связаны с фотосинтезом

17. Сущность процесса фотосинтеза, его эффективность. Приблизительные объемы прироста биомассы, годового образования сухого вещества и энергии, потребления углекислоты и основных минеральных элементов питания при фотосинтезе.

Фотосинтез — это процесс, при котором энергия солнечного света превращается в химическую энергию. В самом общем виде это можно представить следующим образом: квант света (hv) поглощается хлорофиллом, молекула которого переходит в возбужденное состояние, при этом электрон переходит на более высокий энергетический уровень. В клетках зеленых растений в процессе эволюции выработался механизм, при котором энергия электрона, возвращающегося на основной энергетический уровень, превращается в химическую энергию. Синтезируемые в процессе фотосинтеза сахара почти сразу преобразуются в высокополимерные соединения – крахмал, накопленный в виде крахмальных зерен в хлоропластах и лейкопластах; одновременно часть сахаров выделяется из пластид и перемещается по растению в другие места. Сахар, преобразовавшийся в крахмал, тем самым на некоторое время выходит из дальнейших метаболических реакций; однако крахмал может вновь расщепляться до сахара, который окисляется и при этом обеспечивает клетку необходимой энергией. Образование органов, их рост тесно связаны с фотосинтезом. В периоды наиболее активного роста дневные приросты сухого вещества достигают от 100 до 500 кг на 1 га. При этом растение должно ассимилировать от 200 до 500 кг СО2, 1–2 кг азота, 0,25–0,5 кг фосфора, 2–4 кг калия, 2–4 кг других элементов и испарить до 1 000 л воды. Энергия, запасенная в процессе фотосинтеза за год, приблизительно в 100 раз больше энергии, образуемой при сгорании каменного угля, который добывается во всем мире за это время. Эта энергия используется для образования органического вещества из неорганического. Каждый год в процессе фотосинтеза растения образуют 155 млрд. т сухого органического вещества. Органические вещества, которые используют люди, животные, сначала образуются в зеленом листе. Большая часть той энергии, которая используется человеком в различных областях производства – это энергия солнца, преобразованная в зеленом листе и запасенная в каменном угле, нефти, древесине. Для образования такого большого количества органического вещества растения поглощают на протяжении года 200 млрд. т СО2 и выделяют 145 млрд. т кислорода. Весь кислород атмосферы образовался в процессе фотосинтеза. Таким образом, процессы дыхания и горения смогли произойти только после возникновения фотосинтезирующих организмов





18. Поглощение света при фотосинтезе, физиологически-активная радиация. Спектры поглощения хлорофилла и каротиноидов. Организация свето-собирающих комплексов фотосистем
Пигменты хлоропластов поглощают видимый свет, поэтому эта область была названа физиологически активной радиацией (ФАР). К ФАР со стороны более коротких волн прилегает ультрафиолетовая радиация, а со стороны более длинных – инфракрасная. Инфракрасные лучи не принимают участия в фотосинтезе, но принимают участие в регулировании других процессов жизнедеятельности растений. Коротковолновая радиация (ультрафиолетовая, γ-лучи, космические лучи), как показано, играют большую роль в мутагенезе растений, в изменении их наследственности.

Передача энергии по пигментам антенных комплексов происходит по принципу индуктивного резонанса (без флуоресценции и переноса заряда). Природа индуктивного резонанса состоит в следующем. Каждая молекула хлорофилла, поглотившая hv и перешедшая в сингелтное возбужденное состояние, является молекулярным осциллятором. Возникающее вокруг возбужденной молекулы переменное электрическое поле с определенной частотой колебания индуцирует осцилляцию диполя соседней молекулы. При этом м.-донор переходит в основное состояни, а м.-акцептор возбужденное состояние. В молекуле хлорофилла два уровня возбуждения. Первый обусловлен переходом на более высокий уровень е` в системе сопряженных = связей, а второй — с возбуждением неспаренных е` атомов N и O2 в порфириновом ядре. При поглощении света электроны переходят в колебательное движение. Наиболее подвижными в молекуле являются делокализованные е`, орбитали которых как бы размазаны, обобщены между двумя ядрами. Особенно легко возбуждаются е` сопряженных = связей. Если электрон не меняет спина, то это приводит к возникновению 1 и 2 синглетного состояния. Если же один из электронов меняет спин, то такое состояние называют триплетным. Наиболее высокий энергетический уровень — это второй синглетный уровень. Электрон переходит на него под влиянием сине-фиолетовых лучей. Спектры поглощения хлорофилла и каротиноидов: хлорофилл в той же концентрации, как в листе, имеет две основные линии поглощения в красных и сине-фиолетовых лучах. При этом ХЛ а в растворе имеет максимум поглощения 429 и 660 нм, тогда как ХЛ b — 453 и 642 нм. Поглощение света каротиноидами, их окраска, а также способность к окисл.-восст. реакциям обусловлены наличием сопряженных = связей, b каротин имеет два максимума поглощения, соответствующие длинам волн 482 и 452 нм. Каротиноиды, поглощая определенные участки солнечного спектра, передают энергию этих лучей на молекулы хлорофилла. Светособирающие комплексы. Хлорофилл выполняет две функции: поглощения и передачи энергии. Более 90 % всего хлорофилла хлоропластов входит в состав светособирающих комплексов (ССК), выполняющих роль антенны, передающей энергию к реакционному центру фотосистем I или II. Помимо хлорофилла в ССК имеются каротиноиды, а у некоторых водорослей и цианобактерий — фикобилины, роль которых заключается в поглощении света тех длин волн, которые хлорофилл поглощает сравнительно слабо. Передача энергии идёт резонансным путём (механизм Фёрстера) и занимает для одной пары молекул 10−10—10−12 с, расстояние на которое осуществляется перенос составляет около 1 нм. Передача сопровождается некоторыми потерями энергии (10 % от хлорофилла a к хлорофиллу b, 60 % от каротиноидов к хлорофиллу), из-за чего возможна только от пигмента с максимумом поглощения при меньшей длине волны к пигменту с большей. Именно в таком порядке взаимно локализуются пигменты ССК, причём наиболее длинноволновые хлорофиллы находятся в реакционных центрах. Обратный переход энергии невозможен.ССК растений расположен в мембранах тилакоидов, у цианобактерий основная его часть вынесена за пределы мембран в прикреплённые к ним фикобилисомы — палочковидные полипептидно-пигментные комплексы, в которых находятся различные фикобилины: на периферии фикоэритрины (с максимумом поглощения при 495—565 нм), за ними фикоцианины (550—615 нм) и аллофикоцианины (610—670 нм), последовательно передающие энергию на хлорофилл a (680—700 нм) реакционного центра.

19. Организация фотосинтетического аппарата на уровне листа, мезофилла, клетки и мембраны тилакоидов. Особенности строения листа у С4-растений.

Лист. Если рассматривать строение листа как органа, выполняющего процесс фотосинтеза, то следует отметить следующее. Верхняя и нижняя эпидерма листовой пластинки, если не считать замыкающих клеток устьиц, состоит из клеток с большими вакуолями, в которых отсутствуют хлоропласты. Такие клетки хорошо пропускают свет в мезофилл и, таким образом, непосредственного участия в фотосинтезе не принимают. Эпидермальные клетки, покрытые кутикулой и воском, уменьшая транспирацию, помогают поддерживать водный гомеостаз листа. Последний процесс очень важный, так как скорость фотосинтеза зависит от количества воды в тканях. С другой стороны, через кутикулу проходит в 20–30 раз меньше СО2, чем через устьица. Создается противоречие между водным и газовым обменом. Это противоречие снимается действием устьиц, которые за счет открытия и закрытия регулируют скорость поступления СО2 и скорость транспирации. Таким образом, эпидерма задерживает воду и пропускает свет. Устьица – основные ворота для СО2. Кроме того, в некоторых растениях, например у яблони, СО2 может поступать через временные щели в кутикуле. Устьица пропускают по принципу обратной связи: СО2 используется на фотосинтез, его концентрация в межклетниках уменьшается, устьица открываются; СО2 поступает в лист, его концентрация в межклетниках увеличивается – устьица закрываются. Мезофилл у большинства растений состоит из палисадной и губчатой паренхимы. В клетках мезофилла имеются хлоропласты, здесь и проходит вся фотосинтетическая деятельность зеленого растения. Палисадная паренхима, которая размещается под верхней эпидермой, поглощает больше света, чем губчатая. Палисадная является главной тканью, где идет фотосинтез. Для губчатой паренхимы характерно наличие межклетников. Они помогают газообмену листа. Объем их составляет 15–20 % общего объема листовой пластинки. Благодаря верхней и нижней эпидерме, а также межклетникам, в листе образуется внутреннее газовое окружение, которое хотя и связано с наружной средой с помощью устьиц, но как правило, всегда отличается от наружной среды по своему составу. Кроме того, межклетники значительно увеличивают внутреннюю поверхность листа, которая в 7–10 раз больше, чем наружная. Это весьма важно в связи с небольшим содержанием в воздухе СО2 (0,045 %). Однако увеличивается опасность обезвоживание тканей листа. Так как фотосинтез идет главным образом в палисадной паренхиме, ее называют ассимиляционной. Повышенное азотное питание и хорошее водообеспечение растений вызывают увеличение размеров мезофильных клеток и количества в них хлоропластов. Суммарная поверхность всех хлоропластов может превышать в десятки раз поверхность листовой пластинки, что также способствует поглощению СО2. Внутренняя поверхность листа, поглощающая свет и углекислый газ, во много раз больше поверхности листовой пластинки, что помогает более интенсивному прохождению фотосинтеза. Поэтому лист лучше, чем другие органы, приспособлен к выполнению фотосинтетической функции, хотя фотосинтез идет и в зеленых клетках стебля, цветов, плодов. Мезофилл пронизан сеткой проводящих пучков, в состав которых входят сосуды, которые доставляют хлоропластам воду и минеральные соли, и ситовидные трубки, отводящие от хлоропластов продукты фотосинтеза. Непосредственного контакта проводящих пучков с каждой клеткой нет. Поэтому в листе, как и в корне, транспорт веществ для фотосинтеза и отток продуктов фотосинтеза идет не только по ксилеме и флоэме, но и по симпласту и апопласту.Лист С4-растения. Еще более интересны отклонения от типичного строения листа, влияющего на фотосинтез, связаны с генетическими различиями. В таких растениях, как кукуруза, сахарный тростник (С4-растения), каждый проводящий пучок окружен одним слоем крупных клеток хлорофиллоносной паренхимы, образующих обкладку проводящего пучка. Фотосинтез идет и в клетках мезофилла и в клетках обкладки проводящего пучка. Свет – источник энергии для восстановления СО2 в процессе фотосинтеза. Однако растения умеренной зоны используют на фотосинтез 1 – 2 % (максимум 5 %), а тропические растения – 5–6 % (и даже до 15 %) поглощаемого видимого света. Остальная часть энергии тратиться на испарение воды. Через устьица СО2 попадает в подустьичную воздушную полость, а затем в соединяемые воздушные ходы, по которым диффундирует через весь мезофилл листа. На влажной клеточной поверхности СО2 растворяется в воде, гидратируется и преобразуется в углекислоту Н2О3. Часть этой кислоты нейтрализуется катионами в клетке с образованием бикарбонат-ионов (НСО3). Этот бикарбонат служит для клетки резервом СО2, который клетка может использовать для фотосинтеза.

Наши рекомендации