Проводящие пути и центры слухового анализатора.
Общая характеристика проводящих путей. Существует пять основных уровней переключения восходящих слуховых волокон: кохлеарный комплекс, верхнеоливарный комплекс, задние бугры четверохолмия, медиальное коленчатое тело таламуса и слуховая зона коры больших полушарий (височные извилины). Кроме того, по ходу слухового пути расположено большое количество небольших ядер, в которых осуществляется частичное переключение восходящих слуховых волокон.
Выше уже отмечалось, что первыми нейронами слухового пути являются биполярные нейроны спирального ганглия, центральные отростки которых образуют слуховой, или кохлеарный, нерв – ветвь VIII пары черепно-мозговых нервов. По этому нерву информация от волосковых (главным образом от внутренних) клеток поступает к нейронам продолговатого мозга, входящих в состав кохлеарного (улиткового) комплекса, т.е. к нейронам второго порядка. В этот комплекс, лежащий в области вестибулярного поля ромбовидной ямки, входят два ядра – дорсальное и вентральное (которое состоит из двух отделов – переднего и заднего). Аксон биполярного нейрона спирального ганглия, подходя к кохлеарным ядрам, разделяется на две веточки – одна идет к дорсальному ядру, другая – к вентральному. Не исключено, что волокна, идущие от апикальной части улитки (т.е. несущие информацию о низких звуках) преимущественно достигают нейронов вентрального ядра, а волокна, идущие от основания улитки (возбуждаются высокими звуками) – передают свою импульсацию, главным образом, нейронам дорсального ядра кохлеарного комплекса. Таким образом, для кохлеарных ядер характерно тонотопическое распределение информации.
Оба кохлеарных ядра дают восходящие тракты – дорсальный и вентральный. Аксоны нейронов дорсального кохлеарного ядра, не заходя к нейронам верхней оливы, сразу же направляются через мозговые полоски к латеральному лемниску, где часть из них переключается на нейроны лемниска (III нейроны), а часть проходит транзитом до нейронов нижних бугров четверохолмия или до нейронов внутреннего коленчатого тела.
Аксоны вентрального кохлеарного ядра сразу же направляются к варолиеву мосту через трапециевидное тело к верхней оливе, где находится верхнеоливарный комплекс (часть волокон идет к ипсилатеральному комплексу, часть – к контрлатеральному). В его состав входят два ядра: 1) S-образное, или латеральное; 2) акцессорное, или медиальное. Это второе ядро получает информацию одновременно как от ипсилатрального, так и от контрлатерального кохлеарного ядра, что обеспечивает формирование бинаурального слуха уже на уровне верхней оливы.
Аксоны верхнеоливарнных нейронов направляется к латеральному лемниску, где часть из них переключаются на нейроны этого лемниска (IV нейроны), а часть проходит транзитом к нейронам нижних бугров четверохолмия или к нейронам медального коленчатого тела, которое является последним переключательным звеном восходящего слухового пути.
Таким образом, от дорсальных и вентральных кохлеарных ядер информация в конечном итоге поступает к нижним буграм четверохолмия и медальному коленчатому телу. Благодаря этому звуковая информация используется (за счет наличия текто-спинального пути, а также путей к медиальному продольному пучку, соединяющему глазодвигательные нейроны III, IV и VI пар черепно-мозговых нервов) для реализации ориентировочного рефлекса на звуковое раздражение (поворот головы а сторону источника звука), а также для регуляции тонуса скелетной мускулатуры и формирования взора. Одновременно, от нейронов медиального коленчатого тела информация (через слуховое сияние) достигает нейронов верхней части височной доли мозга (поля 41 и 42 по Бродману), т.е. высших акустических центров, где совершается корковый анализ звуковой информации.
Следует подчеркнуть, что для верхнеоливарного комплекса, нижних бугров четверохолмия, медиального коленчатого тела, а также для первичных проекционных зон слуховой коры, т.е. для всех важнейших слуховых центров характерна тонотопическая организация структур. Это отражает существование принципа пространственного анализа звуков, позволяющего осуществлять тонкое частотное различение на всех этажах слуховой системы.
Чрезвычайно важным свойством слуховой системы является билатеральная иннервация структур на каждом уровне. Впервые она появляется на уровне верхней оливы и дублируется на каждом последующем уровне. Это позволяет реализовать способность человека и животных оценивать место расположения источника звука.
Наряду с восходящими путями в слуховой системе имеются и нисходящие пути, обеспечивающие контроль высших акустических центров над получением и обработкой информации в периферическом и проводниковом отделах слухового анализатора.
Нисходящие пути слухового анализатора начинаются от клеток слуховой коры, переключаются последовательно в медиальных коленчатых телах, задних буграх четверохолмия, верхнеоливарном комплексе, от которого идет оливокохлеарный пучок Расмуссена, достигающий волосковых клеток улитки. Кроме того, имеются эфферентные волокна, идущие от первичной слуховой зоны, т.е. от височной области, к структурам экстрапирамидной двигательной системы (базальным ганглиям, ограде, верхним буграм четверохолмия, красному ядру, черной субстанции, некоторым ядрам таламуса, ядрам основания моста, ретикулярной формации ствола мозга) и пирамидной системы. Эти данные указывают на участие слуховой сенсорной системы в регуляции двигательной активности человека.
Переработка информации в коре больших полушарий.Слуховая кора принимает активное участие в обработке информации, связанной с анализом коротких звуковых сигналов, с процессом дифференцировки звуков, фиксацией начального момента звука, различения его длительности. Слуховая кора ответственна за создание комплексного представления о звуковом сигнале, поступающем в оба уха раздельно, а также за пространственную локализацию звуковых сигналов. Нейроны, участвующие в обработке информации, идущей от слуховых рецепторов, специализируются по выделению (детектированию) соответствующих признаков. Особенно эта дифференцировка присуща нейронам слуховой коры, расположенным в верхней височной извилине. Здесь имеются колонки, которые анализируют поступающую информацию. Среди нейронов слуховой коры выделяют так называемые простые нейроны, функции которых – вычленение информации о чистых звуках. Есть нейроны, которые возбуждаются только на определенную последовательность звуков или на определенную амплитудную их модуляцию. Есть нейроны, которые позволяют определить направление звука. В целом, в первичных и вторичных проекционных зонах слуховой коры происходит сложнейший анализ звукового сигнала. Однако важной является и функция ассоциативных зон коры больших полушарий. Например, представление о мелодии возникает именно благодаря деятельности этих зон коры, в том числе на основе информации, хранящейся в памяти. Именно с участием ассоциативных зон коры (с помощью специализированных нейронов типа «бабушкиных» нейронов) человек способен максимально извлечь информацию, поступающую от различных рецепторов, в том числе от фонорецепторов.
Анализ частоты звука (высоты тона).Выше уже отмечалось, что звуковые
колебания разной частоты вовлекают в колебательный процесс базилярную мембрану на всем ее протяжении неодинаково. Однако в улитке помимо пространственного кодирования используется еще один механизм – временной. Пространственное кодирование, основанное на определенном расположении возбужденных рецепторов на базилярной мембране, возникает при действии звуков высокой частоты. А при действии низких и средних тонов, кроме пространственного, осуществляется и временное кодирование: информация передается по определенным волокнам слухового нерва в виде импульсов, частота следования которых повторяет частоту звуковых колебаний. Кроме улиточных механизмов, в слуховой системе имеются и другие механизмы, обеспечивающие частотный анализ звукового сигнала. В частности, это связано с наличием на всех этажах слуховой системы нейронов, настроенных на восприятие определенной частоты звука, что выражается в тонотопической организации слуховых центров. Для каждого нейрона существует оптимальная, или характеристическая, частота звука, на которую порог реакции нейрона минимален, а в обе стороны по диапазону частот от этого оптимума порог резко возрастает. При надпороговых звуках характеристическая частота дает и наибольшую частоту разрядов нейрона. Таким образом, каждый нейрон настроен на выделение из всей совокупности звуков лишь определенного, достаточно узкого участка частотного диапазона. Частотно-пороговые кривые разных клеток не совпадают, а в совокупности перекрывают весь частотный диапазон слышимых звуков, обеспечивая полноценное их восприятие.
Анализ интенсивности звука. Сила звука кодируется частотой импульсации и числом возбужденных нейронов. Увеличение числа возбужденных нейронов при действии все более громких звуков обусловлено тем, что нейроны слуховой системы отличаются друг от друга по порогам реакций. При слабом стимуле в реакцию вовлекается лишь небольшое число наиболее чувствительных нейронов, а при усилении звука в реакцию вовлекается все большее число дополнительных нейронов с более высокими порогами реакций. Кроме того, как уже отмечалось выше, пороги возбуждения внутренних и наружных рецепторных клеток неодинаковы, поэтому в зависимости от интенсивности звука меняется соотношение числа возбужденных внутренних и наружных волосковых клеток.