Системы регуляции растений (внутриклеточные и организменные): генетическая, мембранная, трофическая, гормональная, электрофизиологическая

К внутриклеточным относятся метаболическая, генетическая и мембранная системы регуляции. Генетическая регуляция осуществляется в ходе синтеза новых белков, в том числе и ферментов, на уровне транскрипции, трансляции и процессинга. Молекулярные механизмы регуляции рН, ионы, модификация молекул, белки-регуляторы. Роль генов состоит в хранении и передаче генетической информации. Информация записывается в хромосомной ДНК с помощью триплетного нуклеотидного кода. Информация в клетках передается благодаря синтезу РНК на матрице ДНК (транскрипция) и синтезу специализированных белков на матрице мРНК с участием рибосом, содержащих рРНК и рибосомальные белки, и тРНК (трансляция). В ходе и после транскрипции или трансляции происходит модификация (процессинг) биополимеров, транспортирующихся в места назначения. Важную роль в поддержании пространственной организации белковой молекулы и в ее транспорте к местам постоянной дислокации играют белки-шапероны [4]. Специализированные белковые молекулы в соответствии со своей "структурной" информацией путем самосборки образуют специфические комплексы, выполняющие различные функции: каталитические (ферменты), двигательные (сократительные белки), транспортные (насосы и переносчики), рецепторные (хемо-, фото- и механорецепторы), регуляторные (белковые активаторы, репрессоры, ингибиторы), защитные (лектины) и др.

Мембранная регуляция осуществляется благодаря изменениям в мембранном транспорте, связыванию или освобождению ферментов и регуляторных белков и путем изменения активности мембранных ферментов. Все функции мембран - барьерная, транспортная, осмотическая, энергетическая, рецепторно-регуляторная и др. - одновременно являются и различными сторонами механизма регуляции внутриклеточного обмена веществ. Причем особое значение во всех этих механизмах имеет система мембранных хемо-, фото- и механорецепторов, позволяющих клетке оценивать качественные и количественные изменения во внешней и внутренней среде и в соответствии с этим изменять функциональную активность клетки.

Трофическая регуляция - взаимодействие с помощью питательных веществ - наиболее простой способ связи между клетками, тканями и органами. У растений корни и другие гетеротрофные органы зависят от поступления ассимилятов - продуктов, образующихся в листьях в процессе фотосинтеза. В свою очередь, надземные части нуждаются в минеральных веществах и воде, поглощаемых корнями из почвы. Корни используют ассимиляты, поступающие из побега, на собственные нужды, а часть трансформированных органических веществ движется в обратном направлении. Изолированные корни в стерильных условиях для нормального развития помимо минеральных веществ и сахара нуждаются еще и в некоторых витаминах, таких, как В1 , В6 и никотиновая кислота. Очевидно, витамины поступают в корни из побегов. Однако трофическая регуляция носит скорее количественный, чем качественный, характер. При ограниченном питании у растений, как правило, развитие продолжается в соответствии с внутренними закономерностями, но у них формируются органы уменьшенного размера и сокращается количество листьев, плодов и семян. Интересно, что при этом конечная величина сформировавшихся семян (даже если это одно семя) мало отличается от нормы. Все это указывает, что наряду с трофическими взаимодействиями в растительном мире функционируют более совершенные системы регуляции, обеспечивающие взаимодействие всех его частей.

Гормональная система - важнейший фактор регуляции и управления у растений [7-10]. Фитогормоны - ауксин (индолил-3-уксусная кислота), цитокинины (зеатин, изопентениладенин), гиббереллины, абсцизовая кислота, этилен - сравнительно низкомолекулярные органические вещества с высокой физиологической активностью, присутствующие в тканях в очень низких концентрациях (пикограммы и нанограммы на 1 г сырой массы), с помощью которых клетки, ткани и органы взаимодействуют между собой. Как правило, фитогормоны вырабатываются в одних тканях, а действуют в других, однако в некоторых случаях они функционируют в тех же клетках, где образуются. Характерной особенностью фитогормонов, отличающей их от других физиологически активных веществ (витаминов, микроэлементов), является то, что они включают физиологические и морфогенетические программы, например такие, как корнеобразование, созревание плодов и т.д. Каждый из перечисленных фитогормонов является основой системы, включающей в себя ферменты синтеза, связывания (конъюгирования) и освобождения гормона из связанного состояния, способы мембранного и дальнего транспорта, механизмы действия, которые определяются наличием рецепторов и их локализацией, и, наконец, ферменты, кофакторы и ингибиторы разрушения фитогормона

Электрофизиологическая система регуляции у растений включает в себя возникновение градиентов биоэлектропотенциалов (БЭП) между разными частями растения и генерацию распространяющихся потенциалов (потенциала действия и вариабельного потенциала) . Градиенты БЭП возникают благодаря различию величин мембранного потенциала (МП) в клетках разных тканей, зон и органов растительного организма. Эти градиенты не остаются постоянными, а совершают медленные периодические колебания, обусловленные изменениями условий внутренней и внешней среды. Разность потенциалов между любыми частями растения не может превышать 100-200 мВ, так как эти величины соответствуют максимальной величине МП растительных клеток. Потенциалы действия (ПД) представляют собой электрические импульсы деполяризации МП продолжительностью 1-60 с и распространяющиеся по плазматической мембране через плазмодесмы из клетки в клетку со скоростью 0,1-1,0 см/с. ПД индуцируется лишь при достижении критического уровня деполяризации МП плазмалеммы и перемещаются по живым клеткам проводящих пучков. Вариабельные потенциалы возникают при градуальном изменении МП плазмалеммы и распространяются по плазматическим мембранам и плазмодесмам в виде медленных волн с периодом 1-10 мин. Распространяющиеся потенциалы индуцируются, как правило, при резких и сильных воздействиях на клетки факторов внешней и внутренней среды. Как распространяющиеся потенциалы, так и градиенты БЭП у растений, очевидно, выполняют, как и у животных, информационные функции.

Наши рекомендации