Психофизиология и нейропсихология
ЭУМК
ПСИХОФИЗИОЛОГИЯ И НЕЙРОПСИХОЛОГИЯ
подготовила Е.К. Агеенкова
Раздел 1 СТРОЕНИЕ И ФУНКЦИИ НЕРВНОЙ СИСТЕМЫ
Раздел 1 СТРОЕНИЕ И ФУНКЦИИ НЕРВНОЙ СИСТЕМЫ
Тема 1.1 ФОРМИРОВАНИЕ НЕРВНОЙ СИСТЕМЫ В ПРОЦЕССЕ
ФИЛО- И ОНТОГЕНЕЗА
Ранние этапы эмбриональной жизни характеризуются зарождением ЦНС. Онтогенез нервной системы человека продолжается и в течение первых лет после рождения.
После оплодотворения (слияние сперматозоида и яйцеклетки), которое происходит обычно в маточной трубе, слившиеся половые клетки образуют одноклеточный зародыш — зиготу, обладающую всеми свойствами обеих половых клеток. С этого момента начинается развитие нового (дочернего) организма.
Формирование бластулы. Первая неделя развития зародыша — это период дробления (деления) зиготы на дочерние клетки. В результате деления зиготы образуется многоклеточный пузырек — бластула с полостью внутри (от греч. blаstos — росток). Стенки этого пузырька состоят из клеток двух видов: крупных и мелких. Из наружного слоя мелких светлых клеток формируются стенки пузырька — трофобласт. В дальнейшем клетки трофобласта образуют внешний слой оболочек зародыша. Более крупные темные клетки (бластомеры) образуют скопление — эмбриобласт (зародышевый узелок, зачаток зародыша), который располагается внутри от трофобласта. Из этого скопления клеток (эмбриобласта) развиваются зародыш и прилежащие к нему внезародышевые структуры (кроме трофобласта).
Гаструляция. Однослойный зародыш превращается в двухслойный — гаструлу, состоящую из наружного зародышевого листка — эктодермы и внутреннего — энтодермы. У позвоночных уже в ходе гаструляции возникает и третий зародышевый листок — мезодерма. В дальнейшем из эктодермы образуется эпителий кожи, нервная система и частично органы чувств; из энтодермы — эпителий пищеварительного канала и его железы; из мезодермы — мышцы, эпителий мочеполовой системы и серозных оболочек, из мезенхимы — соединительная, хрящевая и костная ткани, сосудистая система и кровь.
Формирование нейрулы. На 3-й неделе развития на спинной стороне зародыша выделяется плотный тяж растущих клеток эктодермы — первичная полоска, головной отдел которой утолщается и образует первичный узелок. Клетки первичной полоски погружаются в первичную бороздку, проникают в пространство между эктодермой и энтодермой. Позже образуется нервный желобок, а впоследствии – нервная трубка.
Закладка нервной трубки
Данный этап развития нервной системы человека идентичен строению нервной системы одного из самых простых хордовых животных – ланцетника. У них наблюдаются признаки как позвоночных, так и беспозвоночных животных. ланцетники принадлежат к типу хордовых и занимают промежуточное положение между кольчатыми черьвями и позвоночными животными. Их нервная система представлена нервной трубкой с полостью внутри, тянущейся вдоль спинной стороны над хордой. Нервная трубка, состоящая из нервных клеток, на всем своем протяжении имеет одинаковое строение. Головного мозга нет. От нервной трубки отходят многочисленные нервы к внутренним органам и поверхности тела, воспринимающие химические и механические раздражения. У ланцетника очень слабо развиты органы чувств, нет органов слуха и зрения.
Стадия мозговых пузырей у плода человека
В головном конце нервной трубки после ее замыкания очень быстро образуется три расширения – первичные мозговые пузыри, вокруг которых образуются различные мозговые структуры. Сначала образуются передний, средний и ромбовидный мозг. Затем из ромбовидного мозгаобразуются задний и продолговатый мозг, а из переднего образуются конечный мозг и промежуточный. Позднее из конечного формируются полушария мозга и подкорковые ядра.Конечный мозгвключает в себядва полушария и часть базальных ядер. Полости первичных мозговых пузырей сохраняются в мозгу ребенка и взрослого в видоизмененной форме, образуя желудочки мозга и сильвиев водопровод.
К третьему месяцу эмбрионального развития начинают определяться основные участки ЦНС. К ним относятся большие полушария, мозговые желудочки, ствол, спинной мозг. К пятому месяцу выделяются в коре (полушарий) основные борозды. Через четыре недели определяется преобладание (функционального характера) высших отделов над областями стволово-спинальными.
Развитие отдельных областей мозга человека
Продолговатый мозг. На начальных этапах формирования продолговатый мозг имеет сходство со спинным мозгом. Затем в продолговатом мозге начинают развиваться ядра черепных нервов.
Задний мозг включает в себя мост и мозжечок. Мозжечок частично развивается из клеток крыловидной пластинки заднего мозга. Клетки пластинки мигрируют и постепенно образуют все отделы мозжечка.
Средний мозг. Из базальной пластинки среднего мозга к концу 3-го месяца пренатального периода развивается одно ядро глазодвигательного нерва (III пара черепномозговых нервов). Во второй половине внутриутробного развития появляются основания ножек мозга и сильвиев водопровод.
Промежуточный мозг образуется из переднего мозгового пузыря. Здесь формируется таламус и гипоталамус.
Конечный мозг также развивается из переднего мозгового пузыря. Пузыри конечного мозга, разрастаясь за короткий промежуток времени, покрывают собой промежуточный мозг, затем средний мозг и мозжечок. Наружная часть стенки мозговых пузырей растет значительно быстрее внутренней. С 3-его месяца внутриутробного развития начинается закладка коры в виде узкой полоски густо расположенных клеток. Основными морфологическими проявлениями дифференцировки нейронов коры большого мозга являются прогрессивный рост количества и ветвлений дендритов, коллатералей аксонов и, соответственно, увеличение и усложнение межнейронных связей. К 3-ему месяцу образуется мозолистое тело. У плода и новорожденного нервные клетки в коре лежат сравнительно близко друг от друга, причем часть из них располагается в белом веществе. По мере роста ребенка концентрация клеток снижается. Мозг новорожденного имеет большую относительную массу – 10% от общей массы тела. К концу полового созревания его масса составляет всего около 2% от массы тела. Абсолютная же масса мозга с возрастом увеличивается.
Мозг новорожденного незрелый, причем кора больших полушарий является наименее зрелым отделом нервной системы. Основные функции регулирования различных физиологических процессов выполняют промежуточныйисредний мозг. После рождения масса мозга увеличивается в основном за счет роста тел нейронов, происходит дальнейшее формирование ядер головного мозга. Их форма меняется мало, однако размеры и состав их, а также топография относительно друг друга претерпевают достаточно заметные изменения. Нервные клетки зародыша и новорожденного располагаются концентрированно в белом веществе и на поверхности полушарий. В связи с увеличением поверхности, начинается миграция клеток в серое вещество. Процессы развития коры заключаются, с одной стороны, в образовании ее шести слоев, а с другой – в дифференцировке нервных клеток, характерных для каждого коркового слоя. Образование шестислойной коры заканчивается к моменту рождения. В то же время дифференцировка нервных клеток отдельных слоев к этому времени еще остается не завершенной. Установлено, что именно первые 2-3 года жизни ребенка являются наиболее ответственными этапами морфологического и функционального становления мозга ребенка. К 4-7 годам клетки большинства областей коры становятся близкими по строению клеткам коры взрослого человека. Полностью развитие клеточных структур коры полушарий большого мозга заканчивается только к 10-12 годам.
Морфологическое созревание отдельных областей коры, связанных с деятельностью различных анализаторов, идет неодновременно. Раньше других созревают корковые концы обонятельного анализатора, находящиеся в древней, старой и межуточной коре. В новой коре (неокортекс, кора больших полушарий) прежде всего развиваются корковые концы двигательного (предцентральная извилина) и кожного (постцентральная извилина) анализаторов, а также лимбическая область, связанная с интерорецепторами (рецепторы внутренних органов), и инсулярная область, имеющая отношение к обонятельной и речедвигательной функциям. Затем дифференцируются корковые концы слухового и зрительного анализаторов и верхняя теменная область, связанная с кожным анализатором (постцентральная извилина). Наконец, в последнюю очередь достигают полной зрелости структуры лобной и нижней теменной областей и височно-теменно-затылочной подобласти.
В сравнении со взрослым, у новорожденного затылочная доля в коре полушарий обладает относительно большим размером. Онтогенез человека в первые пять-шесть лет после рождения обладает определённой спецификой. В этот период происходят наибольшие изменения в топографическом расположении, форме и количестве полушарных извилин. К пятнадцати - шестнадцати годам отмечается некая схожесть со взрослыми.
Для постнатального периода характерны и изменения в спинном мозге. У новорожденного он длиннее, нежели у взрослого. Спинной мозг растёт примерно до двадцати лет.
Функционирование нервной вегетативной системы начинается у человека с рождения. В послеродовом периоде отмечается слияние в отдельных узлах и формирование сплетений в нервной симпатической системе.
Вопросы
1. Из каких зародышевых листков образуется нервная система?
2. В какой части нервной трубки формируются первичные пузыри – передний, средний и ромбовидный мозг?
3. Из какого первичного пузыря зародыша образуется задний и продолговатый мозг?
4. Из какого первичного пузыря зародыша образуется конечный и промежуточный мозг?
5. Из какого мозга зародыша формируются полушария мозга?
6. Какие отделы головного мозга включает в себя задний мозг?
7. Какие отделы головного мозга развиваются из среднего мозга зародыша?
8. Какие отделы головного мозга развиваются из промежуточного мозга?
9. Корковые концы какого анализатора созревают раньше других у плода человека?
СТРОЕНИЕ И ФУНКЦИИ НЕЙРОНОВ
В ЦНС человека около 50 млд нервных клеток – нейронов. Отличительная особенность нейрона – наличие отростков: дендритов и аксона.
Диаметр нейрона –5-100 мкм, длина дендрита – 1-6 мкм, длина аксона до 1 м.
Нервные клетки и аксоны окружены глиальными клетками. Глиальные клетки составляют нейроглию, которая занимает половину объема ЦНС (белое вещество)
Функции нейронов – получение сигнала 1) из внешней среды, 2) из внутренней среды, 3)от других нейронов и передача их другим а) нейронам или б) клеткам исполнителям.
Через дендриты (афферентный отросток) идет получение сигнала от других нервных клеток.
Через аксон (эфферентный отросток) идет передача сигнала следующей нервной клетке в нейронной цепи или клетке-исполнителю
Виды нейронов: унитарный нейрон – имеет тело клетки и 1 аксон; биполярный нейрон имеет 1 аксон и 1 дендрит (имеется его разновидность – псевдоуниполярный нейрон), мультиполярный нейрон имеет один аксон и множество дендриторв.
Место передачи нервного импульса от одной нервной клетки другой нервной клетке или клетке-исполнителю называется синапсом. Передача импульсов осуществляется химическим путём с помощью медиаторов или электрическим путём, посредством прохождения ионов из одной клетки в другую. Наиболее распространены химические синапсы.
Синапс – это специализированная зона контакта между отростками нервных клеток и другими возбудимыми и невозбудимыми клетками, обеспечивающая передачу информационного сигнала. Морфологически синапс образован контактирующими мембранами двух клеток. Нейрон осуществляет контакт посредством расширенных окончаний отростков дендритов и аксонов, которые называются бляшками. Мембрана, принадлежащая отросткам нервных клеток, называется пресинаптической, мембрана клетки, к которой передается сигнал, — постсинаптической. Пресинаптическая мембрана является окончанием отростка нервной клетки. Постсинаптическая мембрана является частью клеточной мембраны иннервируемой ткани. Между пресинаптической и Постсинаптической мембраной имеется щель, которая называется синаптической щелью. Таким образом, синаптическая щель представляет собой пространство между пре- и постсинаптичекой мембранами, заполненное жидкостью, близкой по составу к плазме крови.
В соответствии с принадлежностью постсинаптической мембраны синапсы подразделяют на нейросекреторные (передача сигналов между нервной и секреторной клетками), нейромышечные (передача сигналов между нервной и мышечными клетками) и межнейрональные (передача сигналов между нервными клетками).
На рисунке изображены межнейрональные синапсы между отростками нейронов и телом другого нейрона, где: 1 – тело нейрона, 2 – синаптические бляшки, 3 – аксон нейрона, 4 – дендриты нейрона.
Проведение возбуждения через синапс осуществляется обычно посредством химического процесса. Это сложный физиологический процесс, протекающий поэтапно с участием медиаторов. Во многих центральных синапсах, нервномышечных и синапсах парасимпатической нервной системы медиатором является ацетилхолин. Потенциал действия по аксону доходит до бляшки и вызывает изменение проницаемости пресинаптической мембраны для ионов кальция, которые из синаптической щели входят внутрь бляшки, что приводит к разрыву пузырьков и выходу из них ацетилхолина в синаптическую щель. Он диффундирует к постсинаптической мембране, взаимодействует с рецепторами мембраны, что повышает ее возбудимость, изменяет проницаемость для ионов натрия, в результате на постсинаптической мембране возникает возбуждение, которое распространяется на другой нейрон или клетки рабочего органа.
На следующем рисунке изображен аксо-дендритический синапс с химической системой передачи сигнала от аксона одной клетки к дендриту другой. Такой синапс состоит из двух частей: пресинаптической, образованной булавовидным расширением окончаниемаксона передающей клетки и постсинаптической, представленной контактирующим участком цитолеммы воспринимающей клетки (в данном случае — участком дендрита). Синапс представляет собой пространство, разделяющее мембраны контактирующих клеток, к которым подходят нервные окончания. Передача импульсов осуществляется химическим путём с помощью медиаторов или электрическим путём посредством прохождения ионов из одной клетки в другую.
Нейроны соединенные синапсами с множеством других нейронов образуют нейронные сети.
Нейронные сети
Явление, когда в нервный сетях аксон одного нейрона иннервирует несколько следующих нейронов называется дивергенцией. Дивергенция — это контактирование одного нейрона или нервного центра со множеством нейронов или нервных центров. Дивергенция обеспечивает проведение даже слабых стимулов с малого числа нейронов следующим нейронам по многим волокнам (например, мы не замечаем слепого пятна на сетчатке).
Явление, когда в нервный сетях к одному нейрону приходит несколько аксонов называется конвергенцией.Конвергенция — это схождение нескольких нервных путей к одним и тем же нейронам или нервным центрам. Конвергенция обеспечивает суммацию потенциалов, т.е. даже слабые возбуждения могут суммироваться до пороговых величин и генерировать потенциал действия.
На следующем рисунке каждый нейрон из вертикального ряда слева и центрального ряда передает сигнал множеству других нейронов, т.е. наблюдается дивергенция. При этом каждый нейрон из вертикального центрального ряда и ряда слева получает сигналы из множества других нейронов, т.е. наблюдается конвергенция
Торможение в нейронных сетях. Строение нервных сетей обеспечивает усиление сигнала возбуждения, что может привести к перевозбуждению головного мозга, а также не обеспечивает различение качества и местоположение сигнала. Поэтому во всех уровнях нейронов существуют процессы торможения, обеспечиваемые вставочными нейронами – это латеральное или вставочное торможение.
На следующем рисунке вставочные нейроны изображены черным цветом.
Явление конвергенции обеспечивает формирование так называемого рецептивного поля. Рецептивное поле это участок с рецепторами, которые при воздействии на них определённого стимула приводят к изменению возбуждения одного сенсорного нейрона. Таким образом, если множество сенсорных рецепторов образуют синапсы c единственным нейроном, они совместно формируют рецептивное поле этого нейрона. Рецептивные поля соседних сенсорных нейронов могут частично перекрывать друг друга, поэтому информация о действующих на них стимулах передается не по одному, а по нескольким параллельным аксонам, что повышает надежность ее передачи.
На следующем рисунке изображены перекрывающиеся рецептивные поля (слева). В правой части рисунка помимо явлении конвергенции отражены также тормозные вставочные нейроны (изображены черным цветом).
Вопросы
- В каком направлении идут сигналы по дендритам и аксонам?
- Каковы функции нейронов?
- Назовите виды нейронов
- Что такое синапс?
- Как образуются нейронные сети?
- Что такое конвергенция в нейронный сетях?
- Что такое дивергенцияя в нейронный сетях?
- Каков механизм формирования латерального торможения
- Как образуется рецептивное поле
1.2.2 СТРОЕНИЕ ГОЛОВНОГО МОЗГА
Средний вес мозга взрослого человека составляет от 1100-2000 грамм и эти параметры абсолютно никак не влияют на умственные способности обладателя. Самый тяжелый головной мозг — 2850 грамм, но этот человек страдает идиотизмом или слабоумием. Самым «легким» мозгом (1100 грамм) обладает абсолютно успешный человек, с состоявшейся карьерой и имеющий семью. Есть данные о массе головного мозга великих и известных во всем мире людей, например, у Тургенева вес головной нервной системы составлял 2012 грамм, а Менделеева всего 1650 грамм.
Принято выделять пять отделов мозга:
- Продолговатый;
- Мост;
- Средний мозг;
- Промежуточный мозг;
- Мозжечок;
- Большие полушария и кора головного мозга.
Продолговатый мозг является продолжением спинного мозга.
СТРОЕНИЕ СПИННОГО МОЗГА
Спинной мозг – это часть центральной нервной системы (ЦНС). Он располагается в позвоночном канале. Представляет собой толстостенную трубку с узким каналом внутри, несколько сплюснутую в передне-заднем направлении. Имеет довольно сложное строение и обеспечивает передачу нервных импульсов от головного мозга к периферическим структурам нервной системы, а также передачу нервных импульсов от экстеро-, интеро- и проприо-рецепторов к головному мозгу. Он также осуществляет собственную рефлекторную деятельность. Спинной мозг наделён двумя важнейшими функциями — рефлекторной и проводниковой. Наличие простейших двигательных рефлексов (отдёргивание руки при ожоге, разгибание коленного сустава при ударе молоточком по сухожилию и т.д.) обусловлено рефлекторной функцией спинного мозга. Связь спинного мозга со скелетными мышцами возможна благодаря рефлекторной дуге, являющейся путём прохождения нервных импульсов. Проводниковая функция заключается в передаче нервных импульсов от спинного к головному мозгу при помощи восходящих путей движения, а также от головного мозга по нисходящим путям к органам различных систем организма.
Рефлекторная дуга
Строение спинного мозга обеспечивает наличие в организме рефлекторной деятельности за счет формирования рефлекторной дуги.
Рефлекторная дуга (нервная дуга) — путь, проходимый нервными импульсами при осуществлении рефлекса.
Рефлекторная дуга состоит из пяти отделов:
· рецепторов, воспринимающих раздражение и отвечающих на него возбуждением.
· чувствительного (центростремительного, афферентного) нервного волокна, передающего возбуждение к центру; нейрон, имеющий данное волокно, также называется чувствительным. Тела чувствительных нейронов находятся за пределами центральной нервной системы - в нервных узлах (ганглиях) вдоль спинного мозга и возле головного мозга.
· нервного центра. Центры большинства двигательных рефлексов находятся в спинном мозге, где происходит переключение возбуждения с чувствительных нейронов (задние рога серого вещества спинного мозга) на двигательные (передние рога серого вещества спинного мозга).
· двигательного (центробежного, эфферентного) нервного волокна, несущего возбуждение от центральной нервной системы к рабочему органу; Центробежное волокно - длинный отросток двигательного нейрона. Двигательным называется нейрон, отросток которого подходит к рабочему органу и передает ему сигнал из центра.
· эффектора – рабочего органа, который осуществляет эффект, реакцию в ответ на раздражение рецептора. Эффекторами могут быть мышцы, сокращающиеся при поступлении к ним возбуждения из центра, клетки железы, которые выделяют сок под влиянием нервного возбуждения, или другие органы.
По характеру ответной реакции, в зависимости от того, какие органы в ней участвуют
· моторные, или двигательные рефлексы – исполнительным органом служат мышцы;
· секреторные рефлексы – заканчиваются секрецией желез;
· сосудодвигателъные рефлексы – проявляющиеся в сужении или расширении кровеносных сосудов.
Вопросы
1. Назовите функции спинного мозга
2. Назовите отделы спинного мозга
3. Каковы функции нейронов передних рогов спинного мозга?
4. Каковы функции нейронов задних рогов спинного мозга?
5. Что представляет собой рефлекторная дуга?
6. Из каких отделов состоит рефлекторная дуга?
Тема 1.3СЕНСОРНЫЕ СИСТЕМЫ ГОЛОВНОГО МОЗГА.
ПЕРЕРАБОТКА ИНФОРМАЦИИ В ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЕ
Восприятие сигналов среды и первичную переработку данных сигналов в организме человека осуществляют рецепторы.
По расположению в организме человека различают экстерорецепторы,интерорецепторы, проприорецепторы.
Экстерорецепторы расположены на периферии организма и осуществляют восприятие и первичную переработку сигналов внешней среды: электромагнитных вол (зрительное восприятие), колебания воздуха (слуховое восприятие), физическое воздействие (тактильное восприятие), химический состав (вкусовое и обонятельное восприятие).
Интерорецепторы, находятся во внутренних органах и передают информацию об их состоянии высшим регуляторным центрам в ЦНС. Данная информация распознается сознанием только в виде ощущений.
Проприорецепторы находятся в мышцах и суставах. Информация из этих областей распознается сознанием как мышечное чувство и расположение тела и его частей.
По форме различают следующие виды рецепторов: нервные клетки (зрительные и обонятельные рецепторы), соматические клетки, не имеющие отростков (вкусовые и слуховые рецепторы), и нервные окончания (тактильные рецепторы, интерорецепторы и проприорецепторы).
Физиология сна и сновидений
Сон представляет собой чередование различных функциональных состояний головного мозга, а не «отдыхом» для головного мозга, как считалось ранее. Во время сна перестраивается мозговая деятельность, которая необходима для переработки и консолидации информации, попавшей в период бодрствования, перевода ее с промежуточной в долговременную память.
Активность нейронов в различных отделах коры большого мозга и глубинных структурах мозга во время сна остается практически такой же, как и при бодрстровании.
Теории механизмов сна
1. Химическая теория сна. Выдвинута в прошлом веке. Считалось, что в процессе бодрствования образуются гипнотоксины, которые вызывают засыпание. В последующем была отвергнута. Однако сейчас вновь выдвигается биохимическая теория. В данное время установлено, что нейромедиатор серотонин способствует развитию медленного сна, норадреналин - быстрого. Кроме этого, из мозга выделены нейропептиды, которые вызывают засыпание при действии на гипоталамические центры мозга, например, это пептид дельта-сна.
2. Теория центра сна. Создатель теории - австрийский лауреат Нобелевской премии физиолог Гесс. В 30-е годы он обнаружил, что при электрическом раздражении ядер ГТ в области третьего желудочка, происходит засыпание животного.
В настоящее время установлено, что сон и бодрствование - это два взаимно дополняющих функциональных состояния. Их регуляция осуществляется центрами, находящимися в реципрокных отношениях. Обнаружены центры бодрствования в ретикулярной формации среднего и промежуточного мозга, в этих же отделах мозга находятся центра сна. При этом нейромедиатором в центрах сна является серотонин и пептиды сна. Центры сна активируются в результате уменьшения количества нервных импульсов, поступающих в ретикулярную формацию от периферических рецепторов по коллатералям, а также по нисходящим путям от коры больших полушарий. При возбуждении центров сна тормозятся центры бодрствования и активирующее влияние ретикулярной формации на кору уменьшается, развивается сон
3. Теория разлитого торможения коры. Предложена И.П. Павловым. По его теории сон - это разлитое торможение коры больших полушарий, возникающее в результате его иррадиации из локальных участков, где вследствие утомления первоначально произошло торможение. Эта теория также не в полной мере объясняет возникновение сна. В частности установлено, что в период быстрого сна кора находится в деятельном состоянии.
4. Теория П.К. Анохина. Согласно ей, в результате утомления развивается торможение локальных участков коры. Ретикулярная формация перестаёт оказывать активирующее влияние на кору больших полушарий и в ней развивается разлитое торможение.
Виды сна
По современным представлениям, сон не единственное состояние мозга и организма, а совокупность двух качественно различных состояний - так называемого медленного и быстрого сна.
Открытие фазы быстрого сна и её связи со сновидениями было признано за Натаниэлом Клейтманом и Юджином Асерински из Чикагского университета в 1953 году.
Медленный сон (син.: медленноволновой сон, ортодоксальный сон), длится 80-90 минут. Наступает сразу после засыпания. Он включает в себя несколько стадий.
Первая стадия. Альфа-ритм уменьшается, и появляются низкоамплитудные медленные тета-ритмы, по амплитуде равные или превышающие альфа-ритм. Поведение: дремота с полусонными мечтаниями, абсурдными или галлюциногенными мыслями и иногда с гипнагогическими образами (сноподобными галлюцинациями). Мышечная активность снижается, снижается частота дыхания и пульса, замедляется обмен веществ, и понижается температура, глаза могут совершать медленные движения. В этой стадии могут интуитивно появляться идеи, способствующие успешному решению той или иной проблемы или иллюзия существования их. В этой стадии могут отмечаться гипнагогические подергивания.
Вторая стадия. (неглубокий или лёгкий сон). Дальнейшее снижение тонической мышечной активности. Сердечный ритм замедляется, температура тела снижается, глаза неподвижны. Занимает в целом около 45-55 % общего времени сна. Первый эпизод второй стадии длится около 20 минут. В ЭЭГ доминируют тета-волны, появляются так называемые «сонные веретёна» — сигма-ритм, который представляет собой учащённый альфа-ритм (12—14—20 Гц). С появлением «сонных веретён» происходит отключение сознания; в паузы между веретёнами (а они возникают примерно 2—5 раз в минуту) человека легко разбудить[4]. Эпизодически сонные веретена могут включаться в структуру стадий 3-4. Повышаются пороги восприятия.
Третья стадия. Медленный сон. Стадия классифицируется как 3-я, если дельта-колебания (2 Гц) занимают менее 50 % и 4-я стадия — если дельта составляет более 50 %.
Четвёртая стадия. Самый глубокий медленный дельта-сон. Преобладают дельта-колебания (2 Гц). Третью и четвёртую стадии часто объединяют под названием дельта-сна. В это время человека разбудить очень сложно; возникает 80 % сновидений, и именно на этой стадии возможны приступы лунатизма, ночные ужасы, разговоры во сне и энурез у детей. Однако человек почти ничего из этого не помнит.
У здорового человека третья стадия занимает 5-8 %, и четвёртая стадия ещё около 10-15 % общего времени сна. Первые четыре медленноволновые стадии сна в норме занимают 75—80 % всего периода сна. Предполагают, что медленный сон связан с восстановлением энергозатрат. Исследования показали, что именно фаза медленного сна является ключевой для закрепления осознанных «декларативных» воспоминаний[5].
Быстрый сон (син.: быстроволновой сон, парадоксальный сон, стадия быстрых движений глаз, или сокращённо БДГ-сон, REM-сон). Это — пятая стадия сна, она была открыта в 1953 г. Клейтманом и его аспирантом Асеринским. Быстрый сон следует за медленным и длится 10—15 минут.
На ЭЭГ наблюдаются быстрые колебания электрической активности, близкие по значению к бета-волнам пилообразной волны. В этот период электрическая активность мозга сходна с состоянием бодрствования. Вместе с тем (и это парадоксально) в этой стадии человек находится в полной неподвижности, вследствие резкого падения мышечного тонуса. Однако глазные яблоки очень часто и периодически совершают быстрые движения под сомкнутыми веками. Существует отчётливая связь между БДГ и сновидениями. Если в это время разбудить спящего, то в 90 % случаев можно услышать рассказ о ярком сновидении.
Во время быстрого сна резко подавляются спинномозговые рефлексы. Однако на фоне общего снижения тонуса появляются короткие подергивания отдельных мышц туловища и особенно лица. В то же время мозговой кровоток усиливается. Характерными проявлениями быстрого сна являются нерегулярное увеличение частоты сердечных сокращений, артериального давления, усиление гормональной активности («вегетативная буря»). Таким образом, весь ночной сон состоит из 4-5 циклов. Каждый из них начинается с первых стадий медленного сна и заканчивается быстрым сном. Продолжительность цикла составляет 80-100 мин. В первых циклах преобладает дельта-сон, в последних циклах - быстрый сон.
Механизмы фаз сна
Мозговые структуры, участвующие в организации сна, достаточно многочисленные и локализуются на разных уровнях мозгового ствола - так называемая сомногенных (гипногенным) система. Основными структурами, которые обеспечивают медленный сон, является серотонинергические нейронные образования ядер шва в стволе головного мозга и таламический синхронизирующая система, а также некоторые гипоталамические структуры (ядра перегородки). Система, при участии которого формируется быстрый сон, включает ретикулярные ядра моста головного мозга (варолиева моста) и лимбических структурах мозга.
Как свидетельствуют данные электрофизиологического исследования, в медленном сне происходит незначительное уменьшение частоты разрядов нейронов, в скором, наоборот, - их увеличение. Поэтому активность нейронов в различных отделах коры и подкорковых структур большого мозга во время сна остается практически такой же, как и при бодрствовании. Энергетический метаболизм мозга в быстром сне значительно выше, чем в состоянии спокойного бодрствования.
Церебральные биохимические механизмы, лежащие в основе возникновения сна, сложные и включают много звеньев. В них принимают участие серотонин-, адрен-, холинергические системы, некоторые полипептиды (дельта-пептид), аргинин-вазотонин, бета-эндорфин, субстанции Р и др..
Многие вопросы организации процессов сна получили объяснение с открытием восходящих активирующих влияний ретикулярной формации ствола мозга на кору больших полушарий. Экспериментально было доказано, что сон возникает во всех случаях устранения восходящих активирующих влияний ретикулярной формации на кору мозга. Были установлены нисходящие влияния коры мозга на подкорковые образования. В бодрствующем состоянии при наличии восходящих активирующих влияний ретикулярной формации на кору мозга нейроны лобной коры тормозят активность нейронов центра сна заднего гипоталамуса. В состоянии сна, когда снижаются восходящие активирующие влияния ретикулярной формации на кору мозга, тормозные влияния лобной коры на гипоталамические центры сна снижаются.
Иногда во время сна наблюдается так называемое частичное бодрствование, которое объясняется наличием определенных каналов реверберации возбуждений между подкорковыми структурами и корой больших полушарий во время сна на фоне снижения восходящих активирующих влияний ретикулярной формации на кору мозга. Например, кормящая мать может крепко спать и не реагировать на сильные звуки, но она быстро просыпается даже при небольшом шевелении ребенка. В случае патологических изменений в том или ином органе усиленная импульсация от него может определять характер сновидений и быть своего рода предвестником заболевания, субъективные признаки которого еще не воспринимаются в состоянии бодрствования.
Физиологическая сущность сновидений
По современным данным, сновидения является следствием неупорядоченной активности нейронов большого мозга при дефиците внутреннего дифференцированного торможения. Приспособительное (адаптивное) значение сновидений пока не доказано. Считают, что сновидения выполняют защитную функцию, отвлекая частично Неспящие сознание от различных внешних и внутренних раздражений, которые могли бы возбудить. К внешним раздражителям, которые возбуждают отдельные группы клеток коры большого мозга и порождают сновидения (чаще всего в фазу быстрого сна), относятся разнообразные воздействия на сенсорные системы спящего человека. Это шум, яркое освещение комнаты, острые запахи, температурные раздражения кожи и т.д., а также различные интероцептивные импульсы, вызванные переполненным желудком, мочевым пузырем, затрудненим дыханием и др. Сновидения могут определяться мотивационной доминантой. Например, у голодного человека часто бывают сновидения, лейтмотивом которых является поиск и прием пищи, на фоне половой доминанты возникают сексуально окрашенные сновиде