Взаимодействие электромагнитных волн с веществом
3.1. Доказать, что если монохроматический пучок света падает на грань призмы с показателем преломления n под малым углом, то при малом преломляющем угле А призмы угол отклонения φ лучей призмой не зависит от угла падения и равен А(n – 1).
3.2. На стеклянную призму с преломляющим углом А = 55° падает луч света под углом φ = 30°. Определить угол отклонения Δφ луча призмой, если показатель преломления n стекла равен 1,5. Ответ: 35°40'.
3.3. На грань стеклянной призмы (n = 1,5) нормально падает луч света. Определить угол отклонения φ луча призмой, если ее преломляющий угол А = 30°. Ответ: 18°36'.
3.4. Луч света выходит из стеклянной призмы (n = 1,5) под тем же углом, что и входит в нее. Определить угол отклонения φ луча призмой, если ее преломляющий угол А = 60°. Ответ: 37°11'.
3.5. Определить максимальную скорость вынужденных колебаний свободного электрона, если в точке его нахождения радиопередатчик, работающий на частоте 500 кГц, создает поле электромагнитного излучения Е0 = 10 мВ/см. Ответ: 55,9 км/с.
3.6. При прохождении в некотором веществе пути x интенсивность света уменьшилась в 3 раза. Определить, во сколько раз уменьшится интенсивность света при прохождении пути 2х. Ответ: В 9 раз.
3.7. Коэффициент поглощения некоторого вещества для монохроматического света определенной длины волны а = 0,1 см-1. Определить толщину слоя вещества, которая необходима для ослабления света: 1) в 2 раза; 2) в 5 раз. Потери на отражение света не учитывать. Ответ: 1) 6,93 см; 2) 16,1 см.
3.8. Плоская монохроматическая световая волна распространяется в некоторой среде. Коэффициент поглощения среды для данной длины волны а = 1,2 м-1. Определить, на сколько процентов уменьшится интенсивность света при прохождении данной волной пути: 1) 10 мм; 2) 1 м. Ответ: 1) на 1,2 %; 2) на 70 %.
3.9. Свет падает нормально поочередно на две пластинки, изготовленные из одного и того же вещества, имеющие соответственно толщины х1 = 5 мм и х2 = 10 мм. Определить коэффициент поглощения этого вещества, если интенсивность прошедшего света через первую пластинку составляет 82 %, а через вторую – 67 %. Ответ: 0,404 см-1.
Поляризация света
4.1. Описать поведение светового вектора Е в данной точке пространства в случае эллиптически поляризованного света.
4.2. Определить степень поляризации частично поляризованного света, если амплитуда светового вектора, соответствующая максимальной интенсивности света, в 3 раза больше амплитуды, соответствующей его минимальной интенсивности. Ответ: 0,5.
4.3. Степень поляризации частично поляризованного света составляет 0,75. Определить отношение максимальной интенсивности света, пропускаемого анализатором, к минимальной. Ответ: Imax/Imin = 7.
4.4. Определить степень поляризации P света, который представляет собой смесь естественного света с плоскополяризованным, если интенсивность поляризованного света равна интенсивности естественного. Ответ: 0,5.
4.5. Определить степень поляризации P света, который представляет собой смесь естественного света с плоскополяризованным, если интенсивность поляризованного света в 5 раз больше интенсивности естественного. Ответ: 0,833.
4.6. Угол между главными плоскостями поляризатора и анализатора составляет 30°. Определить изменение интенсивности прошедшего через них света, если угол между главными плоскостями равен 45°. Ответ: Уменьшится в 1,5 раза.
4.7. Интенсивность естественного света, прошедшего через два николя, уменьшилась в 8 раз. Пренебрегая поглощением света, определить угол между главными плоскостями николей. Ответ: 60°.
4.8. Определить, во сколько раз ослабится интенсивность света, прошедшего через два николя, расположенные так, что угол между их главными плоскостями α = 60°, а в каждом из николей теряется 8 % интенсивности падающего на него света. Ответ: В 9,45 раза.
4.9. Определить, во сколько раз уменьшится интенсивность естественного света, прошедшего через два николя, главные плоскости которых образуют угол в 60°, если каждый из николей как поглощает, так и отражает 5 % падающего на них света. Ответ: В 9,88 раза.
4.10. Естественный свет проходит через поляризатор и анализатор, угол между главными плоскостями которых равен α. Поляризатор и анализатор как поглощают, так и отражают 10 % падающего на них света. Определить угол α, если интенсивность света, вышедшего из анализатора, равна 12 % интенсивности света, падающего на поляризатор. Ответ: 56°47'.
4.11. Естественный свет интенсивностью I0 проходит через поляризатор и анализатор, угол между главными плоскостями которых составляет α. После прохождения света через эту систему он падает на зеркало и, отразившись, проходит вновь через нее. Пренебрегая поглощением света, определить интенсивность I света после его обратного прохождения. Ответ: I = ½.I0 .cos4α.
4.12. Доказать, что при падении света на границу раздела двух сред под углом Брюстера отраженный и преломленный лучи взаимно перпендикулярны.
4.13. Пучок естественного света падает под углом α = 30° к стеклянной поверхности. Определить показатель преломления стекла, если отраженный луч является плоскополяризованным. Ответ: 1,73.
4.14. Определить показатель преломления стекла, если при отражении от него света отраженный луч полностью поляризован при угле преломления 35°. Ответ: 1,43.
4.15. Определить, под каким углом к горизонту должно находиться Солнце, чтобы лучи, отраженные от поверхности озера (n = 1,33), были максимально поляризованы. Ответ: 36°56'.
4.16. Свет, проходя через жидкость, налитую в стеклянный сосуд (n = 1,5), отражается от дна, причем отраженный свет плоскополяризован при падении его на дно сосуда под углом 41°. Определить: 1) показатель преломления жидкости; 2) угол падения света на дно сосуда, чтобы наблюдалось полное отражение. Ответ: 1) 1,73; 2) 60°7'.
4.17. Параллельный пучок света падает нормально на пластинку из исландского шпата, толщиной 50 мкм, вырезанную параллельно оптической оси. Принимая показатели преломления исландского шпата для обыкновенного и необыкновенного лучей соответственно n0 = 1,66 и nе = 1,49, определить разность хода этих лучей, прошедших через пластинку. Ответ: 8,5 мкм.
4.18. Плоскополяризованный свет, длина волны которого в вакууме λ = 589 нм, падает на пластинку исландского шпата перпендикулярно его оптической оси. Принимая показатели преломления исландского шпата для обыкновенного и необыкновенного лучей соответственно п0 = 1,66 и пе= 1,49, определить длины волн этих лучей в кристалле. Ответ: λ0 = 355 нм, λе = 395 нм.
4.19. Плоскополяризованный свет, длина волны которого в вакууме λ = 530 нм, падает на пластинку из кварца перпендикулярно его оптической оси. Определить показатели преломления кварца для обыкновенного (n0) и необыкновенного (nе) лучей, если длины волн этих лучей в кристалле соответственно равны λ0 = 344 нм и λe = 341 нм. Ответ: n0 =1,54, ne =1,55.
4.20. Определить наименьшую толщину кристаллической пластинки в четверть волны для n = 530 нм, если разность показателей преломления обыкновенного и необыкновенного лучей для данной длины волны пе – n0 = 0,01. Пластинкой в четверть волны называется кристаллическая пластинка, вырезанная параллельно оптической оси, при прохождении через которую в направлении, перпендикулярном оптической оси, обыкновенный и необыкновенный лучи, не изменяя своего направления, приобретают разность хода, равную λ/4. Ответ: 13,3 мкм.
4.21. Используя задачу 4.20, дать определение кристаллической пластинки «в целую волну» и определить ее наименьшую толщину для λ = 530 нм, если разность показателей преломления обыкновенного и необыкновенного лучей для данной длины волны п0 – ne = 0,01. Ответ: 53 мкм.
4.22. Объяснить, изменится ли наблюдаемая оптическая картина в случае эффекта Керра, если направление электрического поля изменить на противоположное.
4.23. Определить толщину кварцевой пластинки, для которой угол поворота плоскости поляризации монохроматического света определенной длины волны φ = 180°. Удельное вращение в кварце для данной длины волны α = 0,52 рад/мм. Ответ: 6,04 мм.
4.24. Пластинка кварца толщиной d1 = 2 мм, вырезанная перпендикулярно оптической оси кристалла, поворачивает плоскость поляризации монохроматического света определенной длины волны на угол φ1 = 30°. Определить толщину d2 кварцевой пластинки, помещенной между параллельными николями, чтобы данный монохроматический свет гасился полностью. Ответ: 6 мм.
4.25. Определить массовую концентрацию С сахарного раствора, если при прохождении света через трубку длиной l = 20 см с этим раствором плоскость поляризации света поворачивается на угол φ = 10°. Удельное вращение α сахара равно 1,17.10-2 рад.м2/кг. Ответ: 74,8 кг/м3.
4.26. Раствор глюкозы с массовой концентрацией C1 = 0,21 г/см3, находящийся в стеклянной трубке, поворачивает плоскость поляризации монохроматического света, проходящего через раствор, на угол φ1 = 24°. Определить массовую концентрацию С2 глюкозы в другом растворе в трубке такой же длины, если он поворачивает плоскость поляризации на угол φ2 = 18°. Ответ: 157 кг/м3.
4.27. Плоскополяризованный монохроматический свет, прошедший через поляроид, оказывается полностью погашенным. Если же на пути света поместить кварцевую пластинку, то интенсивность прошедшего через поляроид света уменьшается в 3 раза (по сравнению с интенсивностью света, падающего на поляроид). Принимая удельное вращение в кварце α = 0,52 рад/мм и пренебрегая потерями света, определить минимальную толщину кварцевой пластинки. Ответ: 1,19 мм.